

Table	of	Contents
	

1.	 	Introduction	
2.	 	Object	Oriented	Programming	

	
1.	 	What	is	a	Class?	
2.	 	What	is	an	Object?	
3.	 	Creating	an	Object	
4.	 	State	and	Behavior	
5.	 	Hidden	Instance	Variables	
6.	 	Sending	a	Message	to	a	Receiver	
7.	 	Message	Passing	
8.	 	Inheritance	
9.	 	Module	

3.	 	Essential	Ruby	

	
1.	 	Symbol	
2.	 	The	yield	Keyword	
3.	 	Everything	is	Not	an	Object	
4.	 	Top	Level	Context	
5.	 	Code	Execution	
6.	 	Binding	
7.	 	Pseudo	Variables	
8.	 	The	Default	Receiver	
9.	 	Message	Sending	Expression	
10.	 	The	Self	at	the	Top	Level	
11.	 	The	Dynamic	Nature	of	Self	
12.	 	When	does	self	Change?	
13.	 	The	main	Object	
14.	 	Message	Sender	at	the	Top	Level	
15.	 	Top	Level	Methods	
16.	 	Same	Sender	and	Receiver	
17.	 	Private	Methods	
18.	 	Scope	of	Variables	
19.	 	Scope	of	Variables	Redux	
20.	 	Every	Object	Has	a	Class	
21.	 	Instance	Methods	and	Instance	Variables	
22.	 	Block	Object	

23.	 	Closures	
24.	 	Focus	on	Messages	
25.	 	Self	and	Scope	
26.	 	Retry	Library	

4.	 	Basics	for	Ruby	Object	Model	

	
1.	 	introduction	
2.	 	Class	Methods	
3.	 	Singleton	Methods	
4.	 	Objects	and	Inheritance	Hierarchy	
5.	 	Class,	Object	and	Module	Hierarchy	
6.	 	Hierarchy	of	Class	Methods	
7.	 	The	Method	Lookup	

5.	 	Object	Oriented	Programming	Revisited	

	
1.	 	Modeling	the	Real	World	
2.	 	Resources	

6.	 	Key	Takeaways	
7.	 	Essential	Book	Series	

Essential	Ruby
This	 book	 covers	 the	 most	 essential	 concepts	 in	 Ruby.	 The	 goal	 is	 to	 provide	 a	 solid
foundation	 to	 build	 upon.	 This	 book	 distills	 my	 Ruby	 programming	 knowledge	 into	 a
concise	 and	 easy-to-read	 format.	 Repetition	 is	 key	 to	 learning	 Ruby.	We	 will	 visit	 the
concepts	from	different	angles.	You	will	get	the	most	benefit	out	of	the	book	if	you	work
through	every	example	as	you	read	through	the	book.

There	 are	 four	 sections	 in	 this	 book.	 Section	 1	 introduces	 the	 basic	 Object	 Oriented
Programming	(OOP).	Section	2	covers	the	required	concepts	to	understand	Ruby.	Section
3	 provides	 the	 basics	 needed	 to	 learn	 the	 Ruby	Object	Model.	 Section	 4	 revisits	 OOP
concepts	required	to	clarify	the	reader’s	questions.

Each	early	chapters	are	as	small	as	possible	and	focuses	on	explaining	one	concept	at	a
time.	Gradually	 the	 later	chapters	 increase	 in	complexity	and	introduce	readers	 to	subtle
concepts.	These	 subtle	 concepts	 are	not	discussed	 in	 any	of	 the	 current	books	on	Ruby.
This	book	uses	Ruby	2.3.0.

Intended	Audience
This	 book	 is	 for	 experienced	 programmers	 of	 other	 languages	 as	 well	 as	 new
programmers.	Experienced	programmers	will	 learn	how	Ruby	differs	 from	other	Object
Oriented	 languages.	New	programmers	will	 build	 a	 solid	 foundation	 for	 learning	Ruby.
Programmers	familiar	with	Ruby	will	learn	about	some	of	the	common	misconceptions.

Programmers	familiar	with	Ruby	can	jump	into	the	following	chapters:

	

1.	 Message	Passing
2.	 Message	Sender	at	the	Top	Level
3.	 Same	Sender	and	Receiver
4.	 Private	Methods
5.	 Focus	on	Messages
6.	 Modeling	the	Real	World

Technical	Reviewers
Jesus	 Castello,	 Michael	 Heinrich,	 Maciej	 Mensfeld,	 Csaba	 Nagy,	 Marko	 Ćilimković,
Philip	Hallstrom	and	Gaurab	Paul

http://www.blackbytes.info/
https://www.linkedin.com/in/michael-heinrich-9335aba3
http://mensfeld.pl
https://github.com/icnagy
http://www.bamboolab.eu/
https://github.com/phallstrom
https://lorefnon.me

About	the	Author

Bala	Paranj	has	a	Master’s	degree	in	Electrical	Engineering	from	Wichita	State	University.
He	began	working	in	the	IT	industry	in	1996.	He	started	his	career	as	a	Technical	Support
Engineer	and	then	became	a	Web	Developer	using	Perl,	Java	and	Ruby.

He	is	available	for	freelance	work.	Please	contact	him	at	support@zepho.com	or	via	Ruby
Plus.	He	is	also	working	on	screencasts	based	on	this	book.	If	you	want	notification	about
the	release,	please	contact	him.

https://www.rubyplus.com/contact

Image	Credits	Pixabay

http://www.pixabay.com

Object	Oriented	Programming
This	section	covers	the	basics	of	Object	Oriented	Programming.	Even	if	you	are	familiar
with	Object	Oriented	Programming,	I	recommend	you	to	read	through	all	chapters	to	get
the	most	out	of	this	book.

Class
In	 this	 chapter,	 you	 will	 the	 learn	 the	 basics	 of	 a	 class	 and	 how	 to	 define	 them	 in	 a
program.	We	will	look	at	the	concept	of	car	and	how	to	represent	a	car	in	a	program.

Concept	of	Car
A	 car	 has	 attributes	 such	 as	 color,	 price,	 model	 and	 so	 on.	 You	 can	 exercise	 certain
behavior	such	as	drive,	stop,	turn,	etc	on	a	car.

Representing	a	Car
We	can	represent	the	concept	of	a	car	using	a	class.

A	class	has	a	class	name.	In	this	example,	the	class	name	is	Car.

Defining	a	Class
Let’s	define	a	Car	class.

class	Car

end

We	use	the	class	keyword	followed	by	the	class	name	to	define	a	class.	In	this	case,	Car	is
the	class	name.

Representing	the	Behavior
We	 can	 represent	 the	 drive	 behavior	 of	 a	 car	 by	 defining	 a	drive()	method	 for	 the	Car
class.

class	Car

		def	drive()

				return	‘driving’

		end

end

The	methods	provide	 the	behavior	 for	 the	objects.	We	use	 the	def	keyword	followed	by
the	 method	 name	 to	 define	 a	 method.	 The	 body	 of	 the	 method	 becomes	 the
implementation.

Car	Class	Analogy
A	Car	class	is	like	a	car	blueprint.

A	car	blueprint	is	used	to	manufacture	many	cars.

	

A	car	class	acts	as	a	template	used	to	create	cars.
A	car	class	describes	the	behavior	and	attributes	of	a	car.

Define	a	method	in	the	Car	class	to	stop	a	car.

Summary
In	 this	 chapter,	 you	 learned	 the	 concept	 of	 class.	 A	 class	 describes	 the	 behavior	 and
attributes	of	a	certain	concept.

Object
In	this	chapter,	you	will	the	learn	the	basics	of	an	object	and	how	to	create	them.

Car	Class
In	 the	 previous	 chapter,	 we	 defined	 a	 Car	 class.	 It	 has	drive	 method	 that	 provides	 the
behavior	for	the	Car	class.

class	Car	

		def	drive

				return	‘driving’

		end

end

Car	Class	Analogy
Car	class	is	like	a	car	blueprint.

Car	Object	Analogy
Car	object	is	like	a	car	made	using	the	car	blueprint.

We	cannot	drive	a	car	blueprint.	We	need	a	real	car	to	exercise	the	drive	behavior.	How	we
do	we	create	a	car	that	we	can	drive	in	a	Ruby	program?

Car	Object
We	use	the	blueprint	to	create	an	object.	The	process	of	creating	an	object	from	a	class	is
called	 instantiation.	 In	 Ruby	 the	 new	 method	 is	 used	 for	 instantiating	 an	 object.	 Let’s
create	an	instance	of	the	Car	class.

class	Car	

		def	drive

				return	‘driving’

		end

end

car	=	Car.new

We	now	have	a	car	object.	How	do	we	invoke	the	drive	behavior	of	the	car	object?

Sending	the	Message
We	invoke	the	drive	behavior	by	sending	a	message	to	the	car	object.	Let’s	send	the	drive
message	to	the	car	object.

p	car.drive

The	dot	notation	is	used	to	send	a	message	to	any	object.	This	prints:

driving

From	now	on,	you	will	hear	calling	a	method	and	invoking	a	method.	These	terms	mean
the	same	thing	as	sending	a	message.

Return	Value	of	Method
In	Ruby,	the	last	statement	executed	is	the	return	value	of	a	method.	We	can	simplify	the
program	by	removing	the	return	statement	in	the	drive	method.

class	Car	

		def	drive

				‘driving’

		end

end

car	=	Car.new(‘red’)

p	car.drive

This	will	still	print:

driving

	

Every	object	is	an	instance	of	a	class.

Summary
In	 this	 chapter,	 we	 created	 a	 car	 object	 by	 creating	 an	 instance	 of	 the	 Car	 class.	 We
invoked	the	instance	method	by	sending	a	drive	message.

Creating	an	Object
In	this	chapter,	you	will	learn	how	to	create	an	object	and	the	initialization	process.

Initialization
Initialization	 is	 the	 process	 of	 preparing	 an	 instance	 of	 a	 class.	 This	 process	 involves
setting	an	 initial	value	for	each	 instance	variable	on	 that	 instance.	Any	required	setup	 is
also	 performed	 before	 the	 new	 instance	 is	 ready	 for	 use.	 For	 the	 car	 example,	 it	 will
answer	questions	such	as:

	

How	many	doors?
What	is	the	color?
Auto	or	Manual	transmission?

We	can	say:

door	=	2

color	=	‘red’

transmission	=	‘auto’

The	 code	 answers	 those	 questions	 by	 initializing	 the	 variables.	 How	 do	 we	 initialize
instance	variables?	Where	do	we	initialize	them?	Let’s	discuss	about	them	now.

Instance	Variable
An	instance	variable	has	a	name	beginning	with	@.	The	instance	variables	comprise	the
state	unique	 to	an	object.	We	can	have	 two	car	objects	with	different	colors	such	as	 red
and	black.	Let’s	 say	 that	 the	 instances	of	 the	Car	 class	 have	 an	 instance	variable	 called
color.	We	can	initialize	the	color	instance	variable	like	this:

class	Car

		def	initialize(color)

				@color	=	color

		end

end

The	parameters	to	the	initialize	method	is	used	to	assign	initial	values	to	the	attributes	of
an	object.	 Instance	 variables	 spring	 into	 existence	when	 they	 are	 initialized	 for	 the	 first

time.	 In	 this	 example,	 we	 initialize	 the	 color	 instance	 variable	@color	 in	 the	 initialize
method.	We	can	now	create	an	instance	of	a	car	object	with	a	specific	color.

car	=	Car.new(‘red’)

We	send	the	new()	message	to	the	Car	class	with	the	color	red	as	the	argument.

Ruby	calls	 the	 initialize	method	with	red	 as	 the	argument.	 In	 the	 initialize	method,	we
store	the	value	of	color,	red,	in	the	instance	variable	@color.

Fabio	Asks
What	happens	if	you	call	the	initialize	method?

Let’s	call	the	initialize	method.

Car.initialize(‘black’)

You	will	get	the	error:

NoMethodError:	private	method	‘initialize’	called	for	Car:Class

We	cannot	call	 the	 initialize	method.	Only	Ruby	can	call	 it.	To	 initialize	an	 instance	of
any	class,	always	use	the	new	method.

Uninitialized	Instance	Variables
Instance	variables	have	nil	value	if	they	are	not	initialized.	The	nil	represents	the	concept
of	nothing	in	Ruby.	Let’s	look	at	an	example.

class	Car		

		def	initialize(color)

				@color	=	color

		end

		def	price

				@price

		end

		def	drive

				return	‘driving’

		end

end

c	=	Car.new(‘red’)

p	c.price

This	prints	nil.	The	Car	class	has	a	new	method	called	price	that	returns	the	price	instance
variable	of	the	car.	Since	it	was	not	initialized	anywhere	in	the	Car	class,	it	has	nil	value.

Rhonda	Asks
Why	is	it	called	an	instance	variable?

Because	the	variable	is	unique	to	a	specific	instance	of	a	class.

Summary
In	 this	 chapter,	 you	 learned	 about	 the	 initialization	 of	 an	 object.	 Initialization	 process
instantiates	a	specific	object	with	certain	attributes.

State	and	Behavior
Instance	 variables	 represent	 the	 state	 of	 an	 object.	 The	 instance	methods	 defined	 in	 the
class	provide	the	behavior	for	an	object.	Every	object	has	its	own	unique	state.	But	they
share	the	same	instance	method	behavior	defined	in	the	class.	We	can	have	a	black	car	that
has	its	own	color	that	shares	the	drive	method.

class	Car

		def	initialize(color)

				@color	=	color

		end

		def	drive

				‘driving’

		end

end

black_car	=	Car.new(‘black’)

p	black_car.drive

This	prints:

driving

Rhonda	Asks
Why	is	the	method	defined	in	the	Car	class	called	as	an	instance	method?

Because,	we	need	an	instance	of	the	Car	class	to	call	the	method.

Instance	Variables	Live	in	the	Object
We	can	ask	Ruby	to	list	all	the	instance	variables	for	car	object.

p	car.instance_variables

This	prints:

[:@color]

The	illustration	shows	that	you	can	define	many	instance	variables	such	as	color,	model	of
the	car	etc.	for	a	car.	Let’s	print	the	instance	variables	in	the	Car	class.

p	Car.instance_variables

This	prints:

[]

The	result	array	is	empty.	There	are	no	instance	variables	in	the	Car	class.

Instance	Method	Lives	in	the	Class
We	can	ask	Ruby	for	the	list	of	instance	methods	in	the	Car	class.

p	Car.instance_methods(false)

This	prints:

[:drive]

The	Car	class	defines	 the	drive	 instance	method,	 so	 it	 shows	up	 in	 the	output.	We	pass
false	to	the		instance_methods		to	print	instance	methods	found	in	the	Car	class	only.

	 The
illustration	shows	that	you	can	define	many	instance	methods	in	the	Car	class.	If	you	print
the	instance	methods	for	the	car	object:

p	car.instance_methods(false)

You	will	get	an	error:

NoMethodError:	undefined	method	‘instance_methods’	for	#<Car:0x00ca0	@color=“red”>

	

Instance	methods	live	in	the	class.
Instance	variables	live	in	the	object.
Instance	variables	are	unique	to	each	object.

Summary
In	this	chapter,	you	learned	about	the	state	and	behavior	and	where	the	instance	methods
and	instance	variables	live.

Hidden	Instance	Variables
In	this	chapter,	you	will	learn	about	inspecting	an	object,	customizing	the	inspect	message
and	visibility	of	instance	variables.

Inspecting	an	Object
We	can	print	the	car	object	to	inspect	it.

class	Car

		def	initialize(color)

				@color	=	color

		end

		def	drive

				‘driving’

		end

end

car	=	Car.new(‘red’)

p	car

This	prints:

#<Car:0xcafb	@color=“red”>

This	shows	that	the	car	instance	has	the	color	instance	variable	with	the	value	red	and	the
memory	location		#CAFB		of	the	car	object.

Customize	Inspecting	an	Object
We	can	provide	a	custom	implementation	of	to_s	method.

class	Car

		def	initialize(color)

				@color	=	color

		end

		def	drive

				‘driving’

		end

		def	to_s

				“I	am	a	#{@color}	car”

		end

end

car	=	Car.new(‘red’)

puts	car

The	to_s	provides	string	representation	of	the	car	object.	This	prints:

I	am	a	red	car

Visibility	of	Instance	Variable
The	instance	variables	are	not	visible	from	the	outside	of	an	object.

Let’s	see	what	happens	when	we	access	the	color	instance	variable.

class	Car

		def	initialize(color)

				@color	=	color

		end

		def	drive

				‘driving’

		end

end

car	=	Car.new(‘red’)

p	car.color

This	gives	an	error:

NoMethodError:	undefined	method	‘color’	for	#<Car:0x007fbc0	@color=“red”>

We	can	define	a	color	method	that	returns	the	color	instance	variable.

class	Car

		def	initialize(color)

				@color	=	color

		end

		def	color

				@color

		end

end

car	=	Car.new(‘red’)

p	car.color

This	prints:

red

	Ruby	has	 accessors	 that	 expose
variables	to	the	outside.	So,	instead	of	defining	our	own	method,	we	can	use	attr_reader.

class	Car

		attr_reader	:color

		def	initialize(color)

				@color	=	color

		end

end

car	=	Car.new(‘red’)

p	car.color

This	prints:

red

	

By	default,	instance	variables	are	hidden	from	the	outside.
We	can	expose	an	instance	variable	via	an	accessor.
You	can	over-ride	the	to_s	method	to	customize	the	inspect	message.

Summary
In	 this	 chapter,	 we	 inspected	 the	 color	 instance	 variable	 of	 the	 car	 object.	 We	 also
discussed	the	concept	of	accessing	the	instance	variables	via	accessors.

Sending	a	Message	to	a	Receiver
In	this	chapter,	you	will	learn	about	the	receiver	object	and	sending	messages	to	a	receiver.

Hail	Taxi
Let’s	write	a	simple	program	to	hail	a	taxi.

3.times	do	

		puts	‘Taxi’

end

This	prints:

Taxi

Taxi

Taxi

Receiver	and	Message
Let’s	 identify	 the	receiver	and	 the	message	 in	 this	simple	program.	The	number	3	 is	 the
receiver.	The	times()	method	is	 the	message.	The	dot	represents	sending	 the	message	to
the	receiver.

The	dot	notation	is	used	when	sending	a	message	is	explicit.

Receiver	Object
The	 receiver	 is	 an	 object.	 Let’s	 find	 out	 the	 class	 of	 the	 receiver	 object	 for	 our	 simple
program.

puts	3.class

This	prints:

Fixnum

This	 demonstrates	 that	 Fixnum	 object	 3	 is	 the	 receiver	 object.	 It	 receives	 the	 times()
message.

Fabio	Asks
Why	is	it	called	the	receiver?

Because	this	object	would	have	received	the	message	that	caused	the	method	to	execute.

Rhonda	Asks
Why	do	we	need	a	receiver?

In	a	OO	language	like	Ruby,	everything	happens	by	sending	messages	to	an	object.	This
object	is	the	receiver.	In	the	next	chapter,	we	will	discuss	more	about	message	passing.

Identify	the	receiver	for	the	car	program	we	wrote	in	the	previous	chapter.

Summary
In	this	chapter,	we	saw:

	

1.	 What	is	a	receiver?
2.	 What	is	a	message?

In	 the	next	chapter	we	will	answer	questions	such	as,	what	 is	a	sender?	Who	is	sending
this	message?

Message	Passing
In	 this	 chapter,	 you	 will	 learn	 the	 basics	 of	 message	 passing.	 We	 will	 discuss	 about
message	sender	and	the	difference	between	intent	and	implementation.	We	will	also	see	an
example	for	an	explicit	sender.

Explicit	and	Implicit	Sender
This	 chapter	will	 examine	 a	program	with	 an	 explicit	 sender.	 In	 a	 later	 chapter	we	will
revisit	our	hail	taxi	program	to	identify	an	implicit	sender.

Sender	Sends	a	Message	to	a	Receiver
In	Ruby,	the	message-sending	metaphor	is	the	basis	for	object	interaction.

Why	is	message-sending	metaphor	used?	Because	it	provides	modularity.

The	metaphor	decouples	 the	 intent	of	 a	message	 from	 the	 implementation	details	of	 the
method.	This	allows	us	to	vary	the	implementation	without	impacting	the	objects	that	send
the	messages.

Intent	vs	Implementation
The	messages	are	more	important	than	the	objects	involved	in	the	interaction.	We	express
intent	by	means	of	the	messages	we	send.	The	name	of	the	message	embodies	the	intent	of
a	message.	The	implementation	details	are	hidden	behind	the	method.	In	this	example,	the
intent	 is	 to	 say	 hello.	 The	 implementation	 is	 using	 either	 a	 string	 telephone	 or	 a	 rotary
telephone.

Responding	to	Messages
In	statically	typed	languages,	you	know	at	compile	time	the	set	of	messages	an	object	can
handle.	In	Ruby,	the	objects	can	gain	the	ability	to	respond	to	new	messages	at	run-time.	It
can	also	lose	the	ability	to	respond	to	messages	at	run-time.

Collaborating	Objects
In	 the	 book,	 Object-Oriented	 Programming	 and	 Java	 by	 Poo,	 Danny,	 Kiong	 et	 al,	 the
authors	say:

Objects	communicate	with	one	another	by	sending	messages.	A	message	is	a	method
call	 from	 a	 message-sending	 object	 to	 a	 message-receiving	 object.	 A	 message-
sending	object	is	a	sender	while	a	message-receiving	object	is	a	receiver.

Sender	Object
The	sender	is	the	object	that	owns	the	scope	where	the	message	originates.

Explicit	Sender

Let’s	now	look	at	an	example	where	the	sender	is	explicit	in	the	code.

class	Teacher

		def	initialize(student)

				@student	=	student

		end

		def	ask_student_name

				@student.tell_name		

		end

end

class	Student

		def	initialize(name)

				@name	=	name

		end

		def	tell_name

				@name		

		end

end

student	=	Student.new(‘Bugs	Bunny’)

teacher	=	Teacher.new(student)

p	teacher.ask_student_name

This	prints:

Bugs	Bunny

We	create	an	 instance	of	 a	Student	 class	with	 the	name	Bugs	Bunny.	We	 then	create	an
instance	 of	 a	 Teacher	 class	 and	 pass	 in	 the	 student	 object	 to	 its	 constructor.	 We	 send
ask_student_name	message	to	the	teacher	object	that	plays	the	role	of	a	receiver.

Then	the	ask_student_name	method	runs.	Inside	this	method,	we	can	print	the	value	of
the	sender	object.

def	ask_student_name

		p	“The	sender	object	is	:	#{self}”

		@student.tell_name		

end

This	prints:

The	sender	object	is	:	#<Teacher:0x007fc3b40>

Bugs	Bunny

We	can	make	this	concept	explicit	by	printing	the	name	of	the	class.

def	ask_student_name

		puts	“The	sender	object	is	:	#{self.class}”

		@student.tell_name		

end

This	prints:

The	sender	object	is	:	Teacher

Bugs	Bunny

Fabio	Asks
How	did	you	figure	out	what	and	where	to	print	the	value	of	the	sender	object?

Ask	yourself	the	following	questions.

	

1.	 Where	did	the	message	originate?
2.	 Which	object	owns	the	scope	at	that	instant?

The	answer	for	the	question	one,	the	line	before:

@student.tell_name

The	answer	for	the	question	two,	the	value	of	self	owns	the	scope	at	that	instant.

	

Every	sender	and	receiver	in	a	message	passing	interaction	is	an	object.
Sender	can	be	either	explicit	or	implicit.
Sender	is	the	owner	of	the	scope	where	the	message	originates.

Summary
In	this	chapter,	you	learned	the	basics	of	message	passing.	You	learned	about	the	message
sender	and	the	difference	between	intent	and	implementation.	We	also	saw	an	example	for
an	explicit	sender.

Inheritance	Basics
In	this	chapter	you	will	learn	about	inheritance	and	how	the	method	look-up	works	in	an
inheritance	hierarchy.

Scope
We	will	not	discuss	the	why	and	when	inheritance	must	be	used.	It	is	beyond	the	scope	of
this	book.	Please	checkout	Nothing	is	Something	presentation	by	Sandi	Metz	or	Essential
Object	Oriented	Analysis	for	a	good	discussion	on	this	topic.

https://www.youtube.com/watch?v=OMPfEXIlTVE
http://www.amazon.com/Essential-Object-Oriented-Analysis-Paranj-ebook/dp/B01DH599DS

Inheritance
Inheritance	represents	is-a	relationship	between	classes.	We	can	say,	“Car	is	a	Vehicle”.

We	can	define	Car	as	the	sub	class	of	Vehicle.

class	Vehicle

		def	drive

				‘drive	method’

		end

end

class	Car	<	Vehicle

end

car	=	Car.new

p	car.drive

The	less	than	symbol,	<,	is	the	syntax	for	inheritance.	This	prints:

drive	method

In	this	example,	the	Car	class	will	inherit	the	behavior	of	its	parent	class,	Vehicle.

Method	Lookup
In	 the	above	example,	when	Ruby	encounters	 the	drive	message	 sent	 to	a	car	object,	 it
looks	for	the	drive	method	in	the	Car	class.	It	does	not	find	it	there.	It	goes	to	the	super
class,	 Vehicle	 of	 the	 Car	 class.	 It	 finds	 the	 drive	 method	 in	 Vehicle.	 It	 executes	 that
method.

What	happens	when	you	call	a	method	that	does	not	exist	in	the	parent?

class	Vehicle

		def	drive

				p	‘driving’

		end

end

class	Car	<	Vehicle

end

car	=	Car.new

car.stop

This	raises	a	NoMethodException	error.	In	general,	Ruby	looks	in	the	class	of	the	object
receiving	the	message	for	the	method.	If	it	does	not	find	the	method,	it	goes	to	its	parent
and	 looks	 for	 the	 method.	 It	 keeps	 searching	 through	 the	 inheritance	 hierarchy	 until	 it
finds	the	method.	What	happens	when	Ruby	reaches	the	root	of	inheritance	hierarchy	and
still	does	not	find	the	method?	In	that	case,	it	raises	NoMethodException.

Fabio	Asks
Why	does	Ruby	look	for	the	method	in	the	Car	class?

The	 instance	 methods	 live	 in	 the	 class.	 We	 discussed	 this	 concept	 in	 the	What	 is	 an
Object?	chapter.

Single	Inheritance
Explicit	Inheritance
In	Ruby,	a	class	can	have	only	one	parent,	so,	there	is	no	multiple	inheritance.

Let’s	check	the	super	class	of	the	Car	class.

class	Vehicle

		def	drive

				‘drive	method’

		end

end

class	Car	<	Vehicle

end

p	Car.superclass

This	prints:

Vehicle

We	see	that	there	is	one	value	for	the	super-class.

The	arrow	pointing	to	the	Vehicle	class	is	the	notation	for	inheritance.	In	this	example	the
inheritance	is	explicit	because	we	can	see	it	in	the	code.

Implicit	Inheritance
Even	if	you	don’t	have	an	explicit	superclass	in	the	code,	any	class	you	define	will	have
one	superclass.	Let’s	look	at	an	example.

class	Car

end

p	Car.superclass

This	prints:

Object

The	Car	class	has	the	Ruby	built-in	Object	as	its	superclass.

Summary
In	 this	 chapter,	 you	 learned	 about	 inheritance	 and	 that	 Ruby	 is	 a	 single	 inheritance
language.	 You	 learned	 that	 any	 user	 defined	 class	 has	 either	 an	 explicit	 or	 an	 implicit
parent.	We	briefly	saw	how	the	method	look-up	occurs	in	an	inheritance	hierarchy.

Module	Basics
In	 this	chapter	you	will	 learn	about	 the	concept	of	module	and	how	 to	overcome	single
inheritance	limitation.

Single	Inheritance
In	 the	 previous	 chapter	 you	 learned	 that	Ruby	 is	 a	 single	 inheritance	 language.	We	 can
have	only	one	parent.	In	this	chapter,	we	will	see	how	Ruby	overcomes	this	limitation	by
using	module.

What	is	a	Module?
Module	 provides	 a	 way	 to	 share	 behavior.	We	 can	 define	 methods	 in	 the	 module	 and
instead	of	using	inheritance,	we	can	use	the	module	to	re-use	code.

module	Driveable

		def	drive

				p	‘driving’

		end

end

class	Car

		include	Driveable

end

car	=	Car.new

car.drive

We	define	a	Driveable	module	with	drive	method.	The	include	statement	inside	the	Car
class	mixes	in	the	Driveable	module	into	the	Car	class.	We	can	instantiate	the	car	object
and	send	the	drive	message	to	it.	This	prints:

driving

This	is	the	mixin	concept.

Mixin	Multiple	Modules
We	can	mixin	multiple	modules	to	our	Car	class.

module	Driveable

		def	drive

				p	‘driving’

		end

end

module	Stopable

		def	stop

				p	‘brake	failure,	cannot	stop’

		end		

end

class	Car

		include	Driveable

		include	Stopable

end

car	=	Car.new

car.drive

car.stop

We	create	a	car	object	and	we	can	call	any	of	the	methods	that	is	available	in	the	mixed-in
modules.	This	prints:

driving

brake	failure,	cannot	stop

The	 include	 statement	 is	 used	 to	mixin	methods	 defined	 in	 a	module	 into	 a	 class.	 The
mixed-in	methods	become	instance	methods	in	the	class.

Extending	a	Module
What	if	we	want	a	class	method?	We	can	use	the	extend	statement	to	pull	in	the	methods
defined	in	a	module	as	class	methods	in	a	class.

module	Turnable

		def	turn

				p	‘turning’

		end

end

class	Car

		extend	Turnable

end

Car.turn

This	prints:

turning

The	turn	method	is	a	class	method	because	we	don’t	need	an	instance	of	Car	class	to	call
the	turn	method.	We	use	the	Car	class	to	call	the	turn	method.

Summary
In	 this	 chapter,	 you	 learned	how	 to	overcome	 the	 single	 inheritance	 limitation.	You	can
define	 as	many	modules	 as	 you	want	 and	mixin	 the	 behavior	 into	 a	 class	 by	 using	 the
include	statement.	We	also	saw	how	to	use	extend	statement	to	re-use	class	methods.

Essential	Ruby
This	 section	will	 cover	 essential	Ruby	 concepts.	You	must	 already	 be	 familiar	with	 the
content	discussed	in	Section	1.

Symbol
In	this	chapter	you	learn	the	concept	of	symbol	and	when	it	is	used	in	Ruby	programs.

Symbol	Analogy

The	dove	is	a	symbol.	It	represents	peace.	There	is	a	one-to-one	association	between	the
symbol	and	what	it	represents.

Ruby	Symbol
The	 symbol	 identifier	 begins	with	 a	 colon.	 In	 the	 IRB	 console,	 we	 can	 represent	 dove
symbol	like	this:

	>	:dove

	=>	:dove

It	is	unique,	as	there	is	only	one	object	corresponding	to	the	dove	symbol.	We	can	verify
it.

	>	:dove.object_id

	=>	1175068	

	>	:dove.object_id

	=>	1175068	

	>	:dove.object_id

	=>	1175068	

	>	:dove.object_id

	=>	1175068

Regardless	of	how	many	times	you	call	the	object_id,	the	memory	location	of	the	object	is
the	same.

Summary
In	 this	 chapter,	 you	 learned	 about	 symbol	 and	 how	 it	 is	 unique	 in	 a	 running	 program.
Symbols	are	used	as	the	arguments	to	methods	and	as	name	of	methods.

The	yield	Keyword
In	this	chapter,	you	will	the	basics	of	yield	keyword.	We	will	implement	our	own	version
of	the	Ruby	built-in	times	method	to	get	a	better	understanding	of	how	it	works.

Yield	Example
Let’s	look	at	an	example	that	uses	yield	keyword	to	execute	code.

class	Actor

		def	act

				yield

		end

end

snowy	=	Actor.new

snowy.act	{	p	‘wag	the	tail’	}

The	act	method	in	Actor	class	has	the	yield	keyword.	The	yield	keyword	yields	flow	of
control	to	the	block	that	calls	the	act	method.	In	our	example,	the	code	between	the	curly
braces	is	the	block	that	gets	executed.	This	prints:

wag	the	tail

Code	Block
Our	simple	hail	taxi	program	uses	a	block	with	do-end	keywords.

3.times	do	

		p	‘Taxi’

end

The	code	block	is	part	of	the	syntax	of	the	method	call.	The	times	method	is	called	with
the	block	that	prints	Taxi.

Implementing	times	Method
Let’s	write	our	version	of	times	method	to	get	a	better	understanding	of	the	Ruby	built-in
times	method.

class	Fixnum

		def	my_times

				for	i	in	1..self

						yield

				end

		end

end

3.my_times	do

		p	‘Taxi’

end

We	re-opened	the	Fixnum	class	to	define	our	my_times	method.	Inside	the	for	 loop,	we
call	the	block	using	the	yield	keyword.	The	block	is	a	nameless	function	and	has	no	name,
so	yield	is	the	only	way	to	call	it.	You	can	think	of	yield	keyword	as	yielding	control	of
flow	to	the	block.	We	then	call	my_times	method	with	a	block	as	an	 implicit	argument.
This	produces	the	same	output.

Fabio	Asks
I	am	getting:

LocalJumpError:	no	block	given	(yield)

when	I	run	the	code	without	a	block.

class	Fixnum

		def	my_times

				for	i	in	1..self

						yield	

				end

		end

end

3.my_times

You	can	prevent	this	error	by	checking	if	the	block	is	given.

class	Fixnum

		def	my_times

				for	i	in	1..self

						yield	if	block_given?

				end

		end

end

3.my_times

Summary
In	this	chapter,	you	learned	the	basics	of	yield	keyword.	We	implemented	our	own	version
of	the	Ruby	built-in	times	method	to	get	a	better	understanding	of	how	it	works.

Everything	is	Not	an	Object
In	 this	 chapter	 you	 will	 learn	 that	 every	 sender	 and	 receiver	 in	 a	 message	 passing
interaction	is	an	object.

Number	is	an	Object
Let’s	ask	Ruby	for	the	class	of	the	number	1.

1.class

This	prints:

Fixnum

Fixnum	is	the	class	used	to	create	an	instance	of	the	number	one.	The	number	is	an	object.
You	can	send	messages	to	them.

1.odd?

This	prints:

true

String	is	an	Object
String	is	a	sequence	of	characters	strung	together.	Let’s	ask	Ruby	for	the	class	of	a	string
object.

‘hello’.class

This	prints:

String

We	can	send	messages	to	the	string	object	‘hello’.

‘hello’.reverse

This	reverses	the	string	to	print:

olleh

Array	is	an	Object
Let’s	ask	Ruby	for	the	class	of	an	array.

[1,2,3,4].class

This	prints:

Array

We	can	send	messages	to	the	array	object.

[1,2,3,4].reverse

This	prints:

[4,	3,	2,	1]

Hash	is	an	Object
Let’s	ask	Ruby	the	class	of	a	hash.

{a:	1,	b:	2}.class

This	prints:

Hash

We	can	send	messages	to	the	hash	object.

{a:	1,	b:	2}.keys

This	prints:

[:a,	:b]

Messages	are	Not	Objects
The	messages	we	send	to	an	object	is	not	an	object.	But,	we	can	convert	them	to	an	object.
Let’s	convert	the	keys()	message	that	we	sent	to	a	hash	to	a	Method	object.

keys_method	=	{a:	1,	b:	2}.method(:keys)

	=>	#<Method:	Hash#keys>

	>	keys_method.class

	=>	Method

We	 can	 convert	 a	message	 to	 a	method	 object	 by	 sending	method	message	 to	 a	 given
object	with	the	argument	of	the	method	name	as	the	symbol.	In	this	example,	it	is	of	the
following	format.

hash_object.method(:method_name)

The	 method_name	 argument	 is	 a	 symbol.	We	 can	 now	 use	 the	 keys_method	 object	 to
invoke	the	keys()	like	this:

keys_method.call

This	prints:

[:a,	:b]

Conditionals	and	Loops	are	Not	Objects
Control	structures	do	not	have	special	syntax	in	Smalltalk.	They	are	instead	implemented
as	 messages	 sent	 to	 objects.	 For	 example,	 Smalltalk	 implements	 if-else	 by	 sending	 a
message	to	a	Boolean	object.	In	Ruby,	control	structures	such	as	if-else,	for,	while	etc.	are
not	objects.	For	an	 in-depth	discussion	on	 this	 topic,	please	 read	Flexing	Your	Message
Centric	Muscles.

https://www.rubyplus.com/articles/2931

Rhonda	Asks
Why	are	we	comparing	Smalltalk	with	Ruby?

Ruby	was	influenced	by	many	languages,	Smalltalk	is	one	of	them.

Fabio	Asks
Are	blocks	objects	in	Ruby?

The	short	answer	is	No.	Blocks	are	not	objects	in	Ruby.	We	need	to	use	Proc,	lambda	or
literal	constructor	->,	to	convert	blocks	into	objects.	In	Smalltalk,	blocks	are	objects.	The
statement:	Everything	is	an	object	is	true	for	Smalltalk	but	not	for	Ruby.	We	will	discuss
this	topic	in	detail	in	the	Closures	chapter.

Summary
In	 this	 chapter,	 you	 learned	 that	 everything	 is	 not	 an	 object	 in	 Ruby.	 It	 is	 much	more
accurate	to	say:	Every	sender	and	receiver	 in	a	message	passing	interaction	is	an	object.
You	 can	 explore	 more	 objects	 in	 Ruby	 such	 as	 Symbols,	 Integer,	 Float	 etc.	 You	 can
browse	the	documentation	and	experiment.

The	Top	Level	Context
In	 this	 chapter	 we	 will	 discuss	 about	 the	 top	 level	 context	 in	 Ruby	 program.	We	 will
experiment	sending	messages	with	and	without	explicit	receiver.

Top	Level
What	is	top	level?	You	are	in	top	level	when	you	have	not	entered	into	a	class,	module	or
method	definition.	Or	exited	from	all	class,	module	or	method	definitions.

Hello	without	Receiver
Let’s	write	a	simple	program	that	prints	hello	at	the	top	level.

puts	‘hello’

As	you	would	expect,	this	prints:

hello

The	IO	Class
Can	we	use	 an	 explicit	 receiver?	Let’s	 ask	Ruby	 for	 the	 public	 instance	methods	 of	 IO
class.

puts	IO.public_instance_methods(false).grep(/put/)

The	grep	searches	for	methods	that	has	put	in	its	name.	The	result	shows	that	the	puts	is	a
public	instance	method	of	IO	class.

putc

puts

The	false	argument	to	the	method	filters	out	the	methods	from	the	super-class	of	IO	class.

Hello	with	Receiver
The	puts	is	an	instance	method	in	IO	class.	Let’s	call	the	public	instance	method	puts	 in
the	IO	class.

io	=	IO.new(1)

io.puts	‘hello’

The	argument	to	IO	constructor,	1,	tells	Ruby	to	print	to	the	standard	output.	This	prints
hello	to	the	terminal.

Standard	Output	Global	Variable
It’s	the	same	as	doing:

$stdout.puts	‘hello’

Here	the	$stdout	is	the	Ruby	built-in	global	variable	for	standard	output.	Global	variables
can	be	accessed	from	anywhere.

Summary
In	this	chapter	we	discussed	about	the	top	level	context	in	Ruby	program.	We	called	the
puts	method	using	an	explicit	receiver	as	well	as	without	providing	an	explicit	receiver.	In
The	Default	Receiver	 chapter,	we	will	 see	what	 happens	when	we	 call	 puts	without	 an
explicit	receiver.

Code	Execution
In	this	chapter	we	will	answer	the	question,	when	does	Ruby	execute	code	as	it	encounters
the	code?

At	the	Top	Level
Open	the	editor	and	print	‘hi’	to	the	standard	output.

puts	‘hi’

This	prints:

hi

Ruby	encountered	the	puts()	method	and	it	executed	the	instruction.	You	see	the	output	in
the	terminal.

Inside	a	Class
Define	a	class	and	print	something	to	the	standard	output	within	the	class.

class	Rabbit

		puts	“I	am	within	Rabbit	class”

end

Running	this	program	prints:

I	am	within	Rabbit	class

This	dynamic	nature	of	Ruby	surprises	developers	who	are	familiar	with	other	languages.

Inside	a	Module
Define	a	module	and	print	something	to	the	standard	output	within	the	module.

module	Rabbit

		puts	“I	am	within	Rabbit	module”

end

Running	this	program	prints:

I	am	within	Rabbit	module

Inside	a	Method	in	a	Class
Let’s	now	add	a	method	to	the	Rabbit	class:

class	Rabbit

		def	speak

				puts	“My	name	is	Bugs	Bunny”	

		end

end

Running	this	program	does	not	print	anything	to	the	standard	output.

Invoking	the	Instance	Method
Why?	Because,	we	need	an	instance	of	Rabbit	to	send	the	speak()	message	to	it.

class	Rabbit

		def	speak

				puts	“My	name	is	Bugs	Bunny”	

		end

end

bugs	=	Rabbit.new

bugs.speak

Running	this	program	prints:

My	name	is	Bugs	Bunny

Inside	a	Method	in	a	Module
What	happens	when	we	define	a	method	in	a	module?

module	Rabbit

		def	speak

				puts	“My	name	is	Bugs	Bunny”

		end

end

Running	this	program	prints	nothing	to	the	standard	output.

Mixin	the	Module
We	can	mixin	the	Rabbit	module	to	the	top	level	and	invoke	the	speak()	method.

module	Rabbit

		def	speak

				puts	“My	name	is	Bugs	Bunny”

		end

end

include	Rabbit

speak

Running	this	program	prints:

My	name	is	Bugs	Bunny

Summary
In	this	chapter,	we	learned	that	Ruby	executes	code	as	it	encounters	code:

	

1.	 At	the	top	level.
2.	 Inside	a	class.
3.	 Inside	a	module.

But,	it	does	not	execute	the	code	inside	the	instance	method	defined	in	a	class	or	a	method
defined	 inside	 a	 module	 as	 it	 encounters	 it.	We	 need	 an	 object	 to	 execute	 an	 instance
method	 defined	 in	 a	 class	 or	 mixin	 the	 method	 defined	 in	 a	 module	 and	 then	 call	 the
method.

Binding
In	 this	 chapter	 you	 will	 learn	 the	 basics	 of	 binding	 and	 how	 we	 can	 execute	 code	 in
different	execution	contexts.

Background
We	have	already	covered	the	basic	concepts	of	variables,	methods	and	self.	This	chapter
will	combine	all	those	concepts	into	one.

What	is	Binding?
A	Binding	object	encapsulates	the	execution	context	at	a	particular	place	in	the	program.
The	execution	context	consists	of	 the	variables,	methods	and	value	of	 self.	This	context
can	be	later	accessed	via	the	built-in	function	binding.	We	can	create	 the	binding	object
by	 using	 Kernel#binding	method.	 The	 Kernel#eval	 method	 takes	 binding	 object	 as	 the
second	 argument.	 Thus,	 the	 binding	 object	 can	 establish	 an	 environment	 for	 code
evaluation.

The	Execution	Context
In	 The	 main	 Object	 chapter,	 you	 saw	 this	 diagram:	

The	particular	place	in	the	program	in	this	example	is	 the	top	level.	The	value	of	self	 is
main.	We	also	saw	how	the	instance	variables	and	the	instance	methods	are	bound	to	the
main	object.	The	above	diagram	 is	 the	execution	context	 for	 the	 top	 level.	The	diagram
can	be	redrawn	to	make	the	binding	concept	clear.

Fabio	Asks
Why	do	we	need	Binding?

Code	 does	 not	 run	 in	 a	 vacuum.	Code	 combined	with	 an	 execution	 context	 becomes	 a
running	program.

Skeleton	Analogy
Code	is	like	a	skeleton.

Execution	Context	is	like	the	human	flesh	and	skin.

Just	like	the	human	flesh	and	skin	on	a	skeleton	forms	the	human	body.	Running	program
is	the	combination	of	code	and	execution	context.

Self	at	the	Top	Level
We	can	verify	that	the	binding	object	at	the	top	level	context	has	main	as	the	value	of	self.

p	TOPLEVEL_BINDING.receiver

This	prints:

main

The	TOPLEVEL_BINDING	is	a	Ruby	built-in	constant	that	captures	the	binding	at	the
top	level.

Local	Variables	at	the	Top	Level
Let’s	check	for	local	variables	defined	at	the	top	level.

p	TOPLEVEL_BINDING.local_variables

This	prints	an	empty	array.

[]

Let’s	define	a	local	variable	at	the	top	level.

p	TOPLEVEL_BINDING.local_variables

x	=	1

This	prints	:

[:x]

Ruby	 read	 all	 the	 statements	 at	 the	 top	 level,	 so	 it	was	 able	 to	print	 the	value	of	x	 that
comes	even	after	the	print	statement.

Instance	Variable	at	the	Top	Level
How	can	we	inspect	the	instance	variable	at	the	top	level	in	the	binding	object?

@y	=	0

p	TOPLEVEL_BINDING.instance_variables

This	prints	an	empty	array.

[]

However,	if	we	set	the	instance	variable	dynamically,	we	can	print	it.

TOPLEVEL_BINDING.instance_variable_set(‘@y’,	0)

p	TOPLEVEL_BINDING.instance_variables

This	prints:

[:@y]

We	can	also	read	the	value	of	the	instance	variable	at	the	top	level.

TOPLEVEL_BINDING.instance_variable_set(‘@y’,	0)

p	TOPLEVEL_BINDING.instance_variable_get(‘@y’)

This	prints:

0

Accessing	the	Local	Variable	at	the	Top	Level
Let’s	use	eval	to	access	the	local	variable	at	the	top	level.

binding_before_x	=	binding

p	“Before	defining	x	:	#{eval(“x”,	binding_before_x)}”

x	=	1

binding_after_x	=	binding

p	“After	defining	x	:	#{eval(“x”,	binding_after_x)}”

This	prints:

Before	defining	x	:	

After	defining	x	:	1

The	local	variable	x	did	not	have	any	value	before	the	assignment	statement.

You	can	see	the	difference	in	this	program	from	the	previous	section	Instance	Variable	at
the	Top	Level.	The	eval	evaluates	 the	value	of	x	at	 the	 top	 level	at	 the	point	at	which	 it
encounters.	We	then	print	the	value	before	and	after	the	local	variable	is	initialized.

Object	Context
Finding	the	self	using	Binding	Object
Here	is	the	example	we	saw	in	Same	Sender	and	Receiver	chapter.

class	Car

		def	drive

				p	“self	is	:	#{self}”

				self.start

		end

		private

		def	start

				p	‘starting…’

		end

end

c	=	Car.new

p	“receiver	is	:	#{c}”

c.drive

Let’s	rewrite	the	above	example	to	use	the	binding	object	to	find	the	receiver.

class	Car

		def	drive

				p	“self	is	:	#{self}”

				p	“receiver	is	:	#{binding.receiver}”

				self.start

		end

		private

		def	start

				p	‘starting…’

		end

end

c	=	Car.new

c.drive

This	example	uses:

binding.receiver

to	print	the	receiver	object.	The	output	is:

self	is	:	#<Car:0x007fe373864dc8>

receiver	is	:	#<Car:0x007fe373864dc8>

The	self	and	the	receiver	is	the	same	car	object.

Fabio	Asks
Can	I	find	the	sender	using	the	binding	object?

No,	binding	object	does	not	have	a	sender	method	that	can	give	us	the	sender	object.

Accessing	the	Instance	Variable
In	What	 is	an	Object	 chapter	we	could	not	 access	 the	color	 instance	variable	of	 the	 car
object.

class	Car

		def	initialize(color)

				@color	=	color

		end

		def	drive

				‘driving’

		end

end

car	=	Car.new(‘red’)

p	car.color

This	example	gave	the	error:

NoMethodError:	undefined	method	‘color’	for	#<Car:0x007f9be4025bc0	@color=“red”>

How	can	we	access	the	color	instance	variable	in	the	car	object	using	binding?	We	know
eval	 method	 takes	 the	 code	 as	 the	 first	 argument	 and	 binding	 as	 the	 second	 argument.
Let’s	print	the	result	of	eval	 that	 takes	the	color	instance	variable	and	binding	of	the	car
object.

class	Car

		def	initialize(color)

				@color	=	color

		end

		def	drive

				‘driving’

		end		

end

car	=	Car.new(‘red’)

p	eval(“@color”,	car.binding)

This	results	in	the	error:

NoMethodError:	private	method	‘binding’	called	for	#<Car:0x007ffb639adbc8	@color=“red”>

Kernel	module	defines	the	binding	method.	Thus,	it	is	available	as	a	private	method	in	the
Object.	Let’s	 define	 a	my_binding	method	 that	will	 provide	 us	 access	 to	 the	 execution
context.

class	Car

		def	initialize(color)

				@color	=	color

		end

		def	drive

				‘driving’

		end

		def	my_binding

				binding

		end

end

car	=	Car.new(‘red’)

p	eval(“@color”,	car.my_binding)

This	prints:

red

We	 are	 able	 to	 take	 a	 peek	 at	 the	 instance	 variable	 in	 the	 binding	 object.	 The	 binding
object	captures	the	value	of	self	inside	the	my_binding	method.	We	know	that	the	value
of	self	inside	the	my_binding	method	is	a	car	object.	The	above	example	is	the	same	as
the	following	example:

class	Car

		def	initialize(color)

				@color	=	color

		end

		def	drive

				‘driving’

		end

		def	my_binding

				puts	@color

		end

end

car	=	Car.new(‘red’)

car.my_binding

This	also	prints:

red

We	can	verify	the	value	of	self	by	running	the	following	example.

class	Car

		def	initialize(color)

				@color	=	color

		end

		def	drive

				return	‘driving’

		end

		def	my_binding

				puts	self

				puts	@color

		end

end

car	=	Car.new(‘red’)

car.my_binding

This	prints	the	car	object	memory	location	and	the	color.

#<Car:0x007fa132018e90>

red

Execution	Context	Analogy
It’s	like	using	a	probe	to	send	some	piece	of	code	to	execute	in	a	different	context.

Executing	 Code	 in	 Different	 Execution
Contexts
The	power	of	binding	is	in	the	ability	to	run	the	same	code	in	different	contexts.	Let’s	take
a	look	at	an	example.

class	Car

		def	initialize(color)

				@color	=	color

		end

		def	my_binding

				binding

		end

end

red_car	=	Car.new(‘red’)

black_car	=	Car.new(‘black’)

code	=	“@color”

p	eval(code,	red_car.my_binding)

p	eval(code,	black_car.my_binding)

This	prints:

red

black

There	is	no	restriction	on	which	object	should	provide	the	binding.	We	can	have	another

class,	let’s	say	dog,	that	provides	an	execution	context	for	the	same	code.

class	Dog

		def	initialize(color)

				@color	=	color

		end

		def	my_binding

				binding

		end

end

dog	=	Dog.new(‘Brown’)

code	=	“@color”

p	eval(code,	dog.my_binding)

This	prints:

Brown

The	my_binding	method	is	like	a	probe.	Code	is	put	inside	of	this	method.

Rhonda	Asks
Why	do	we	need	the	ability	to	run	the	code	in	different	execution	contexts?

Ruby	 is	dynamic	 in	nature.	This	allows	us	 to	 reuse	code	 in	scenarios	 that	we	might	not
have	imagined	when	we	wrote	the	code.

Executing	Code	in	Different	Scope
Execute	Code	in	an	Object	Scope	from	Top	Level	Scope
Let’s	look	at	an	example	that	executes	code	in	the	rabbit	object	scope	from	the	top	level
scope.

class	Rabbit

		def	context

				@first	=	‘Bugs’

				last	=	‘Bunny’

				binding

		end

end

binding	=	Rabbit.new.context

#	Scope	here	has	changed	because	this	is	top	level	scope.

#	But	we	are	executing	the	following	code	in	the	rabbit	object	scope	by	using	eval.

p	eval(“self”,	binding)	

p	eval(“last.size”,	binding)	

p	eval(‘@first’,	binding)

#	This	uses	binding	only,	no	eval	is	used	to	get	the	local	variable

p	binding.local_variable_get(‘last’)

This	prints:

#<Rabbit:0x007fc2a406c318	@first=“Bugs”>

5

Bugs

Bunny

We	were	 able	 to	 take	 a	 look	 at	 the	 local	 variable,	 instance	 variable,	 value	 of	 self	 and
execute	methods	on	the	local	variable.	It	 is	as	if	we	were	inside	the	context	method	like
this:

class	Rabbit

		def	context

				@first	=	‘Bugs’

				last	=	‘Bunny’

				puts	self

				puts	@first

				puts	last

				puts	last.size

		end

end

Rabbit.new.context

This	prints:

#<Rabbit:0x007fe3f3881038>

Bugs

Bunny

5

Execute	Code	in	Top	Level	Scope	from	an	Object	Scope
Let’s	now	see	an	example	where	we	execute	code	in	the	top	level	scope	when	we	are	in	an
object	scope.

@actor	=	‘Daffy’

class	Actor

		def	self.act

				eval(“@actor”,	TOPLEVEL_BINDING)

		end

end

p	Actor.act

This	prints:

Daffy

If	you	access	the	top	level	instance	variable	inside	the	method	from	the	Actor	class	scope,
you	will	not	be	able	to	access	the	value.

@actor	=	‘Daffy’

class	Actor

		def	self.act

				@actor

		end

end

p	Actor.act

This	will	print	nil,	because,	the	@actor	inside	the	act	method	is	in	a	different	scope	and	it
is	not	initialized.	They	are	two	different	variables	that	happens	to	have	the	same	name.

Practical	Example
Read	the	article	Generate	Documents	using	Templates.	This	example	shows	how	we	can
apply	what	we	have	learned	in	this	chapter	to	a	real	problem.

https://rubyplus.com/articles/2161

Summary
In	this	chapter,	we	learned	that	we	can	package	up	the	execution	environment	for	later	use
via	 the	binding.	We	 looked	 at	 the	value	of	 self,	 local	 variable	 and	 the	 instance	variable
inside	a	binding	object.

Pseudo	Variables
In	this	chapter,	you	will	learn	about	the	pseudo-variables	true,	false,	nil,	self	and	super.

What	are	Pseudo	variables?
The	 nil,	 true,	 false,	 self	 and	 super	 are	 pseudo-variables.	 Why	 are	 they	 called	 pseudo-
variables?	Because	they	are	predefined	and	we	cannot	assign	values	to	them.

The	 true,	 false,	 and	 nil	 are	 constants.	 The	 self	 and	 super	 vary	 dynamically	 as	 the	 code
executes.

The	boolean	classes
The	true	and	false	are	unique	instances	of	the	boolean	classes	TrueClass	and	FalseClass.

	>	true.class

	=>	TrueClass	

	>	false.class

	=>	FalseClass

The	Concept	of	Nothing	is	an	Object
The	nil	is	an	unique	instance	of	NilClass.

	>	nil.class

	=>	NilClass

The	nil	is	a	false	value	that	represents	‘no	value’	or	‘unknown’.	It	expresses	nothing.

>	p	‘false’	unless	false

“false”

	=>	“false”	

>	p	‘false’	unless	nil

“false”

	=>	“false”

The	unless	is	equal	to	negation	with	if	statement:

p	‘false’	if	!nil

“false”

	=>	“false”

This	shows	that	nil	is	a	false	value.

The	self	and	super
The	 self	 always	 refers	 to	 the	 receiver	 of	 the	 current	 executing	method.	 The	 super	 also
refers	 to	 the	receiver	of	 the	current	method.	But	when	you	send	a	message	 to	super,	 the
method	 look-up	 changes.	 The	 method	 look-up	 starts	 from	 the	 super-class	 of	 the	 class
containing	the	method	that	uses	super.

class	Vehicle

		def	initialize(wheels)

				@wheels	=	wheels

		end

end

class	Car	<	Vehicle

		attr_reader	:wheels

		def	initialize(color)

				super(4)

				@color	=	color

		end

end

car	=	Car.new(‘red’)

p	car.wheels

In	this	example,	the	super	is	in	the	Car	class.	The	method	look-up	starts	from	the	super-
class	of	Car,	Vehicle.	This	prints:

4

Assigning	Values
You	can	see	that	we	get	an	error	when	we	assign	a	value	to	true,	false	or	nil.

			>	nil	=	1

	SyntaxError:	(irb):1:	Can‘t	assign	to	nil

	nil	=	1

						^

					from	/Users/bparanj/.rvm/rubies/ruby-2.3.0/bin/irb:11:in	`<main>’

		>	true	=	1

	SyntaxError:	(irb):2:	Can‘t	assign	to	true

	true	=	1

							^

					from	/Users/bparanj/.rvm/rubies/ruby-2.3.0/bin/irb:11:in	`<main>’

		>	false	=	1

	SyntaxError:	(irb):3:	Can‘t	assign	to	false

	false	=	1

								^

					from	/Users/bparanj/.rvm/rubies/ruby-2.3.0/bin/irb:11:in	`<main>’

You	can	see	that	we	get	an	error	when	we	try	to	change	the	value	of	self.

>	self	=	1

SyntaxError:	(irb):7:	Can‘t	change	the	value	of	self

self	=	1

						^

				from	/Users/bparanj/.rvm/rubies/ruby-2.3.0/bin/irb:11:in	`<main>’

We	get	a	syntax	error	when	we	try	to	change	the	value	of	super.

>	super	=	1

SyntaxError:	(irb):12:	syntax	error,	unexpected	‘=’

super	=	1

							^

				from	/Users/bparanj/.rvm/rubies/ruby-2.3.0/bin/irb:11:in	`<main>’

Summary
In	this	chapter,	you	learned	about	the	pseudo-variables	true,	false,	nil,	self	and	super.	We
cannot	assign	any	values	to	them.	The	true,	false	and	nil	are	predefined.	The	self	and	super
varies	dynamically.

The	Default	Receiver
In	this	chapter,	you	will	learn	that	when	you	don’t	provide	an	explicit	receiver	in	the	code,
Ruby	uses	self	as	the	default	receiver	object.

The	self	Within	Car
Let’s	define	a	Car	class	and	print	the	value	of	self	inside	the	Car	class.

class	Car

		puts	self

end

This	prints:

Car

The	drive	Class	Method
Let’s	define	a	drive()	class	method	in	the	Car	class.

class	Car

		def	self.drive

				p	‘driving’

		end

end

We	know	that	the	value	of	self	is	Car.	This	is	the	same	as:

class	Car

		def	Car.drive

				p	‘driving’

		end

end

Call	the	Class	Method
Explicit	Receiver
We	can	call	the	drive()	class	method	inside	the	Car	class.

class	Car

		def	self.drive

				p	‘driving’

		end

		Car.drive

end

This	prints:

driving

We	can	also	use	self	instead	of	Car	to	call	the	drive()	class	method.

class	Car

		def	self.drive

				p	‘driving’

		end

		self.drive

end

This	also	prints:

driving

Call	the	Class	Method
No	Receiver
We	know	the	value	of	self	inside	the	Car	class	is	Car.	We	can	omit	the	self	from	the	above
example.

class	Car

		def	self.drive

				p	‘driving’

		end

		drive

end

This	prints:

driving

We	don’t	have	the	dot	notation	that	sends	a	message	or	the	receiver	object.	The	message	is
sent	 to	 the	current	value	of	self	whenever	you	call	a	method	with	no	receiver.	Since	 the
current	value	of	self	is	Car,	we	are	able	to	call	the	drive	class	method.	In	this	example,	Car
is	the	default	receiver	object.

Fabio	Asks
Why	is	it	called	default	receiver?

Because,	when	you	don’t	provide	an	explicit	receiver,	the	current	value	of	self	defaults	as
the	receiver.

Rhonda	Asks
Why	do	we	need	a	receiver	to	send	a	message?

In	a	OO	language	like	Ruby,	all	messages	are	sent	to	some	object.

Insight
There	is	another	way	to	think	about	this	example.	You	can	say	that	whenever	the	sender
object	and	the	receiver	object	is	the	same,	you	can	omit	the	receiver.

We	will	revisit	this	idea	in	an	upcoming	chapter.

Subclass	Calling	Class	Method
The	example	may	seem	trivial,	but	this	allows	us	to	write	code	like	this:

class	Car

		def	self.drive

				p	‘driving’

		end

end

class	Beetle	<	Car

		drive

end

This	example	prints:

driving

Rails	Example
This	 is	 like	 ActiveRecord	 library	 in	 Rails.	 Imagine	 that	 ActiveRecord	 find()
implementation	is	like	this:

class	ActiveRecord

		def	self.find(id)

				p	“Find	record	with	id	:	#{id}”

		end

end

In	our	web	application	we	have	a	Beetle	subclass	of	ActiveRecord	as	the	model.

class	Beetle	<	ActiveRecord

end

In	the	controller,	we	use	the	find	method:

Beetle.find(1)

This	prints:

“Find	record	with	id	:	1”

The	dot	 notation	makes	 sending	messages	 explicit.	 If	 the	 receiver	 and	 the	 sender	 is	 the
same,	you	can	omit	the	receiver	and	the	dot.	In	this	case,	Ruby	will	use	value	of	self	as	the
receiver.	Thus,	self	is	the	default	receiver.

Summary
In	this	chapter,	you	learned	that	the	message	is	sent	to	the	current	value	of	self	when	you
call	a	method	with	no	receiver.	This	object	is	called	the	default	receiver.

Message	Sending	Expression
In	this	chapter,	we	will	identify	the	sender,	receiver,	message	and	arguments	in	a	message
sending	expression.

Background
By	now,	you	already	know:

	

There	is	always	a	receiver.
There	is	always	a	sender.
There	is	always	a	message	that	passes	between	the	sender	and	the	receiver.

Let’s	see	an	example	that	ties	all	these	concepts	together.

Messaging
Let’s	write	the	simplest	program	to	illustrate	the	three	key	takeaways	of	this	book	so	far.

x	=	1	+	2

p	x

This	prints	3.

Explicit	Message
The	above	program	can	be	rewritten	in	an	equal	way.

x	=	1.+	2

p	x

This	 also	 prints	 3.	 This	 example	 makes	 sending	 a	 message	 explicit	 by	 using	 the	 dot
notation.

Explicit	Argument
The	above	program	can	be	rewritten	in	an	another	way.

x	=	1.+(2)

p	x

This	also	prints	3.	This	example	makes	the	argument,	2	to	the	message	+	explicit.

Identify	Receiver
It’s	now	clear	that	1	is	the	receiver.	We	already	know	that	this	object	is	Fixnum.

Identify	Sender
The	sender	is	implicit	because	we	have	written	this	code	at	the	top	level	context.	We	know
that	main	object	is	the	sender.

Sending	a	Message
The	+	is	not	an	operator	in	Ruby.	The	+	is	a	message	that	passes	between	the	sender	and
the	receiver.	Let’s	verify	it.

p	1.respond_to?(:+)

The	respond_to?	method	takes	a	symbol	of	the	method	name	as	the	argument	and	returns
either	true	or	false	depending	on	whether	it	can	respond	to	it	or	not.	This	prints:

true

This	 proves	 that	 Fixnum	 object	 responds	 to	 the	+	message.	We	 can	 explicitly	 send	 the
message	to	Fixnum	object.

p	1.send(:+,	2)

The	 send	 method	 is	 defined	 in	 Kernel	 module	 and	 is	 mixed	 into	 the	 Object.	 So,	 it’s
available	everywhere.	The	first	argument	to	the	send	method	is	the	symbol	of	the	method
name	and	the	second	argument	is	the	argument	for	that	method.	This	prints	3.

Convert	Message	to	an	Object
We	can	convert	the	+	message	sent	to	the	Fixnum	object	into	an	object	and	call	it.

	>	addition	=	1.method(:+)

	=>	#<Method:	Fixnum#+>	

	>	addition.call(2)

The	 method	 called	method	 is	 defined	 in	 Kernel	 module.	 Since	 the	 Kernel	 module	 is
mixed	into	 the	Object,	 it’s	available	everywhere.	This	returns	a	Method	object.	We	send
the	call	message	with	2	as	the	argument	to	add	1	and	2.	This	prints	3.

Fabio	Asks
Are	there	other	messages	in	Ruby	that	looks	like	an	operator?

Yes,	you	can	experiment	in	the	IRB	and	get	a	list	of	those	messages:

>	1.public_methods(false)

	 =>	 [:%,	 :&,	 :*,	 :+,	 :-,	 :/,	 :<,	 :>,	 :^,	 :|,	 :~,	 :-@,	 :**,	 :<=>,	 :<<,	 :>>,	 :

<=,	:>=,	:==,	:===,	:[],…]

The	false	argument	 is	used	 to	 list	only	 the	methods	found	in	Fixnum	class.	We	can	also
send	the	instance_methods	message	to	the	Fixnum	class.

>	Fixnum.instance_methods(false)

This	prints:

[:-@,	 :+,	 :-,	 :*,	 :/,	 :%,	 :**,	 	 :==,	 :===,	 :<=>,	 :>,	 :>=,	 :<,	 :<=,	 :~,	 :&,	 :|,	 :^,	 :[],	 :

<<,	:>>,	…]

You	must	 read	 1	 +	 2	 as,	 the	 object	 1	 is	 sent	 the	 message	 +,	 with	 the	 object	 2	 as	 the
argument.

Summary
In	 this	 chapter,	 you	 learned	 that	 in	 Ruby,	 adding	 two	 numbers	 is	 a	 first-class	message
sending	expression.	We	 identified	 the	sender,	 receiver,	message	and	 the	argument	 in	 the
message	sending	expression.

The	self	at	the	Top	Level
In	this	chapter,	you	will	learn	about	the	current	object,	self	at	the	top	level.

What	is	self?
In	 Ruby,	 there	 is	 always	 one	 object	 that	 plays	 the	 role	 of	 current	 object	 at	 any	 given
instant.	The	current	object	provides	an	execution	context	for	the	code.	This	current	object
is	the	default	receiver.	When	the	receiver	is	not	provided,	the	message	is	sent	to	the	default
receiver.	This	is	the	self.

Self	at	the	Top	Level
Let’s	see	the	value	of	self	at	the	top	level.

puts	self

This	prints:

main

This	tells	us	that	Ruby	has	created	an	object	called	main	for	us	at	the	top	level.	And	all	the
code	we	write	at	the	top	level	will	use	main	as	the	receiver	in	method	calls.

The	main	Object
If	main	is	an	object,	it	must	be	instance	of	some	class.	We	can	ask	Ruby	to	tell	us	which
class	main	is	an	instance	of:

puts	self.class

This	prints:

Object

We	now	know,	Ruby	did	something	like	this:

main	=	Object.new

This	provides	us	an	object	context	to	execute	our	code	at	the	top	level.	Thus,	providing	us
the	default	receiver	main	at	the	top	level.	The	main	is	an	instance	of	the	Object	class.

Hello	at	the	Top	Level
Let’s	print	hello	to	the	standard	output.

puts	‘hello’

As	expected,	this	prints	hello.

Is	main	a	Receiver	Object?
Can	we	use	main,	the	instance	of	Object,	to	call	puts?

main.puts	‘hi’

We	get:

NameError:	undefined	local	variable	or	method	‘main’	for	main:Object

Ruby	 prints	main	 as	 the	 current	 object	 at	 the	 top	 level.	 But,	 there	 is	 no	 such	 variable
called	main.

Human	Visible	main	Object
The	main	is	the	human	visible	representation	of	the	current	object.	Let’s	see	this	in	action
in	the	IRB	console.

	>	self

	=>	main	

	>	self.inspect

	=>	“main”	

	>	self.to_s

	=>	“main”

Fabio	Asks
Why	does	Ruby	create	main	object	at	the	top	level?

In	a	OO	language	like	Ruby,	there	is	always	a	sender	and	receiver	involved	in	a	message
send.	We	did	not	explicitly	create	a	sender	object.	Thus,	Ruby	created	a	sender	object	for
us.	It	is	implicit,	because	it	is	not	visible	in	the	code.

In	an	upcoming	chapter,	we	will	see	that	both	sender	and	receiver	are	main	at	the	top	level.

Rhonda	Asks
If	I	don’t	create	a	receiver	object,	does	Ruby	create	a	receiver	object?

No.	Ruby	does	not	create	a	receiver	object;	it	uses	the	existing	value	of	self	as	the	default
receiver.

Summary
In	this	chapter,	we	discussed	the	default	receiver	self	at	the	top	level	context.	You	learned
that	we	cannot	specify	an	explicit	receiver	for	methods	in	the	top	level	like	puts().	In	such
cases,	 the	 receiver	 is	 implicit	 and	 is	 not	 specified.	 We	 will	 see	 why	 in	 an	 upcoming
chapter.

The	Dynamic	Nature	of	self
In	this	chapter	you	will	learn	how	the	value	of	self	changes	as	the	program	executes.

Car	with	Drive	Method
Let’s	define	a	Car	class	with	a	drive()	method.

class	Car

		def	drive

				‘driving’

		end

end

We	can	create	an	instance	of	the	car	class	and	send	a	message	to	the	car	object.

car	=	Car.new

car.drive

This	prints:

driving

The	self	Before	Sending	a	Message
Let’s	see	the	value	of	self	before	we	send	the	drive	message	to	car	object.

class	Car

		def	drive

				‘driving’

		end

end

car	=	Car.new

p	“Before	sending	the	message,	self	is	:	#{self}”

car.drive

This	prints:

Before	sending	the	message,	self	is	:	main

The	self	After	Sending	a	Message
Let’s	see	the	value	of	self	after	we	send	the	drive	message	to	car	object.

class	Car

		def	drive

				‘driving’

		end

end

car	=	Car.new

car.drive

p	“After	sending	the	message,	self	is	:	#{self}”

This	prints:

After	sending	the	message,	self	is	:	main

The	self	During	Message	Send
Let’s	check	the	value	of	self	during	the	message	send.

class	Car

		def	drive

				‘driving’

		end

end

car	=	Car.new

car.tap	{	|x|	p	“The	value	of	self	is	:	#{x}”}.drive

This	prints:

The	value	of	self	is	:	#<Car:0x007fc6bb912d08>

The	value	of	self	is	the	same	as	the	car	object.

Rhonda	Asks
Where	is	the	tap	method	defined?

Let’s	find	out.

p	Object.method(:tap)

This	prints:

#<Method:	Class(Kernel)#tap>

The	tap	method	is	in	the	Kernel	module.

	>	Kernel.methods.grep(/tap/)

	=>	[:tap]

Kernel	is	mixed	in	to	Object.

	>	Object.methods.grep(/tap/)

	=>	[:tap]

Thus,	tap	method	is	available	on	any	object.	It	executes	a	code	block,	yielding	the	receiver
to	the	block	and	returns	the	receiver.

Fabio	Asks
Why	does	the	following	code	print	main,	when	I	change	code	?

car.tap	{	|x|	p	“The	value	of	self	is	:	#{self}”}.drive

The	self	printed	inside	tap	is	the	same	value	of	self	as	in	the	line	above	the	tap	call.	This	is
due	to	closure	in	Ruby.	You	will	learn	about	closures	in	a	later	chapter.	You	must	print	the
block	variable,	if	you	want	to	peek	inside	the	car	object.	We	can	verify	it.

class	Car

		def	drive

				‘driving’

		end

end

car	=	Car.new

car.tap	{	|x|	p	“The	value	of	self	is	:	#{x}”}.drive

p	car

This	prints:

“The	value	of	self	is	:	#<Car:0x007f854b141ea0>”

#<Car:0x007f854b141ea0>

The	memory	address	of	self	and	the	car	object	is	the	same.	Thus,	they	are	the	same	object.

The	 diagram	 illustrates	 the	 value	 of	 self	 before,	 during	 and	 after	 executing	 the	 drive
method.

Rhonda	Asks
What	is	self	?

The	self	refers	to	the	object	inside	which	the	current	method	is	executing.	It	is	the	receiver
of	the	current	executing	method.

Summary
In	this	chapter,	you	learned	that	Ruby	changes	the	value	of	self	as	it	executes	the	program.
There	is	always	a	self.	The	value	of	self	changes	to	the	current	executing	object	and	Ruby
sends	a	message	to	that	object.	Once	the	method	completes	the	execution,	the	value	of	self
changes	 again.	You	know	 that	 self	 cannot	 be	 assigned	 any	value	 to	 it.	But	 you	 can	use
language	constructs	such	as	class,	module	and	method	declarations	to	make	Ruby	change
the	value	of	self.	We	will	discuss	this	in	the	next	chapter.

When	Does	self	Change?
In	this	chapter,	you	will	learn	that	the	value	of	self	changes	whenever	Ruby	encounters	the
class,	module	or	def	keyword.

Self	at	Top	Level
Open	your	code	editor	and	print	the	value	of	self.

p	self

This	prints:

main

Self	Inside	a	Class
Define	a	class	and	print	the	value	of	self.

class	A

		p	self

end

This	prints:

A

Self	Inside	a	Module
Define	a	module	and	print	the	value	of	self.

module	B

		p	self

end

This	prints:

B

Self	Inside	a	Method	in	a	Class
Define	a	method	inside	the	class	A	and	print	the	value	of	self.

class	A

		def	m

				p	self

		end

end

This	prints	nothing.	Until	now	Ruby	executed	code	as	it	read	the	code.	In	this	case,	it	does
not	execute	the	method	as	it	reads	it.	It	makes	the	method	available	for	instances	of	class
A	to	call	it.	Let’s	create	an	instance	of	A	to	call	the	method	m().

class	A

		def	m

				p	self

		end

end

a	=	A.new

a.m

This	prints	the	instance	of	A:

#<A:0x007fec6b827210>

Self	Inside	a	Method	in	a	Module
Define	a	method	in	module	B	and	print	the	value	of	self	inside	the	method.

module	B

		def	mw

				p	self

		end

end

This	prints	nothing.	We	can	mixin	the	module	B	in	a	class.	Create	an	instance	of	that	class
and	call	the	method	mw().

module	B

		def	mw

				p	self

		end

end

class	Tester

		include	B

end

t	=	Tester.new

t.mw

This	prints:

#<Tester:0x007fdf3c805ef8>

The	value	of	self	inside	the	method	defined	in	a	module	is	the	instance	of	Tester	class.

Self	When	Extending	a	Module
We	can	extend	the	module	and	call	the	class	method	mw().

module	B

		def	mw

				p	self

		end

end

class	Tester

		extend	B

end

Tester.mw

This	prints:

Tester

Self	Inside	a	Module	Method
Define	a	class	method	in	a	module	to	print	the	value	of	self.

module	B

		def	self.mw

				p	self

		end

end

B.mw

This	prints:

B

Self	Inside	a	Class	Method
Define	a	class	method	in	a	class	to	print	the	value	of	self.

class	A

		def	self.m

				p	self

		end

end

A.m

This	prints:

A

Summary
The	following	list	summarizes	what	you	learned	in	this	chapter.

		Self	Location		 		Self	Value		
		Top	Level		 		main		
		Inside	a	Class		 		Class	name		
		Inside	a	Module		 		Module	name		
		Inside	a	Method	in	a	Class		 		Instance	of	the	class		
		Inside	a	Method	in	a	Module		 		Instance	of	the	class	that	mixes	in	the	module		
		Inside	a	Method	in	a	Module		 		Class	name	that	extends	the	module		
		Inside	a	class	Method	in	a	Module		 		Module	name		
		Inside	a	class	Method	in	a	Class		 		Class	name		

The	main	Object
In	this	chapter,	you	will	learn	about	the	main	object	and	that	the	instance	variables	at	the
top	level	is	bound	to	the	main	object.

In	Ruby,	everything	in	executed	in	the	context	of	some	object.	The	methods	are	bound	to
the	value	of	self.	Whenever	self	points	to	main,	the	methods	are	bound	to	main.

What	is	a	main	Object?
The	main	is	the	object	at	the	top	level.	It	is	an	instance	of	Object.	Any	methods	defined	in
main	 become	 instance	 methods	 of	 Object.	 This	 makes	 them	 available	 everywhere,
meaning	that	we	can	call	the	method	without	a	receiver.

Memory	Location	of	main	Object
Let’s	look	at	an	example.

puts	object_id

This	will	print	the	object_id.	On	my	computer,	it	is:

10

The	 object_id	 will	 change	 every	 time	 you	 run	 the	 program.	 Because,	 it	 represents	 the
integer	identifier	for	the	main	object.	Ruby	creates	a	new	main	object	every	time	you	run
the	program.

The	above	code	is	same	as:

puts	self.object_id

Memory	Location	of	Instance	Variable
Let’s	print	the	instance	variable	at	the	top	level.

@age	=	22

puts	@age

This	prints:

22

The	age	will	be	the	same	every	time	you	run	the	program.	The	object_id	of	the	number	22
will	be	the	same.	We	can	verify	this:

@age	=	22

puts	@age.object_id

This	always	prints	45	on	my	laptop.	The	reason	is	that	Ruby	reuses	some	objects	of	built-
in	classes	for	optimization.

Instance	Variables	at	the	Top	Level
Instance	variables	defined	in	the	top	level	context	are	also	bound	to	the	main	object.	Let’s
look	at	an	example.

@age	=	22

p	self.instance_variables

This	prints:

[:@age]

We	know	that	the	value	of	self	is	main	at	the	top	level.	The	output	shows	that	age	instance
variable	 is	 bound	 to	 the	 main	 object.	

Methods	at	the	Top	Level
Let’s	define	a	method	at	the	top	level.

def	learn

		p	‘learning’

end

learn

This	prints:

learning

	Let’s	 trace	 the	value	of	main
as	the	program	executes.

p	self

def	learn

		p	self

		p	‘learning’

end

p	self

learn

This	prints:

main

main

main

learning

The	 value	 of	 self	 is	 main	 throughout	 the	 program.	

Fabio	Asks
Can	we	use	self	to	call	this	method?

def	learn

		p	‘learning’

end

self.learn

This	results	in	an	error.

NoMethodError:	private	method	‘learn’	called	for	main:Object

The	methods	defined	at	 the	top	level	becomes	private	method	in	the	Object.	This	shows
that	 these	 methods	 are	 bound	 to	 the	 main	 object.	

Rhonda	Asks
Why	does	Ruby	add	the	top	level	methods	as	the	private	methods	to	the	main	object?

The	reason	is	that	if	it	adds	it	as	a	public	method,	sub	classes	will	inherit	those	methods.
This	will	pollute	the	sub	classes	with	unnecessary	methods	in	the	public	interface.

Summary
In	this	chapter,	you	learned	about	the	main	object.	You	learned	how	the	instance	variables
and	methods	defined	at	the	top	level	is	bound	to	the	main	object.

Message	Sender	at	the	Top	Level
In	this	chapter	you	will	learn	that	the	main	is	the	message	sender	when	we	call	methods	in
the	top	level	context.

Main	the	Message	Sender
Let’s	write	a	simple	program	to	illustrate	that	main	is	the	message	sender	at	the	top	level.

class	Rabbit

		def	funny?

				true

		end

end

bugs	=	Rabbit.new

p	bugs.funny?

This	prints:

true

The	 message	 sender	 is	 the	 value	 of	 self,	 which	 is	main	 in	 the	 top	 level	 context.	 The
variable	bugs	is	the	message	receiver	and	the	message	sent	is	funny?

Implicit	Sender	for	Hail	Taxi
Let’s	 now	 find	 out	 the	 implicit	 sender	 for	 our	 simple	 hail	 taxi	 program.	Where	 did	 the
message	originate?	Message	originates	at:

3.times

So,	let’s	print	the	value	of	self	before	and	after	this	line	of	code.

puts	“outside	loop	self	is	#{self}”

3.times	do	

		puts	“inside	loop	self	is	#{self}”

		p	‘Taxi’

end

This	prints:

outside	loop	self	is	main

inside	loop	self	is	main

“Taxi”

inside	loop	self	is	main

“Taxi”

inside	loop	self	is	main

“Taxi”

This	demonstrates	that	main	is	the	object	that	is	sending	the	message.	Thus,	main	is	the
sender.	The	self	is	acting	as	the	default	sender.	The	sender	is	implicit	in	the	code,	so	it	is
invisible.	But	 it	 is	 there	 in	 the	 context	of	 executing	 the	example	hail	 taxi	program.	The
Fixnum	object	3	is	the	receiver	and	times	is	the	message.

Inside	the	do-end	block,	the	sender	and	receiver	are	the	same.	Because	the	receiver	of	the

p()	and	puts()	methods	 is	also	main.	This	 is	 subtle.	 If	you	understand	 this	concept,	you
will	have	a	solid	foundation	to	become	a	Ruby	expert.

Implicit	Sender	for	Teacher	Program
In	the	Message	Passing	chapter,	we	saw	the	explicit	sender	for	the	teacher	program.	Let’s
take	a	look	at	that	example	so	that	we	can	identify	the	implicit	sender.

class	Teacher

		def	initialize(student)

				@student	=	student

		end

		def	ask_student_name

				@student.ask_name		

		end

end

class	Student

		def	initialize(name)

				@name	=	name

		end

		def	ask_name

				@name		

		end

end

student	=	Student.new(‘Bugs	Bunny’)

teacher	=	Teacher.new(student)

p	teacher.ask_student_name

The	implicit	sender	in	this	program	is	the	main	object.	Look	at	the	last	line	in	the	example.
You	 can	 see	 that	 the	 teacher	 object	 is	 the	 receiver.	 The	 main	 sends	 the	 message
ask_student_name	 to	 the	 teacher	object.	The	 reason	 is	 that	 at	 the	 top	 level,	main	 is	 the
sender	object.

Fabio	Asks
How	do	I	identify	the	message	sender?

Ask	yourself	the	questions:

	

1.	 Where	did	the	message	originate?
2.	 Who	is	the	owner	of	the	scope	where	the	message	originated?

Rhonda	Asks
What	is	the	message	receiver	in	the	teacher	example?

You	can	ask	Ruby:

def	ask_student_name

		puts	“The	sender	object	is	:	#{self.class}”

		@student.tap	do|x|	

				p	“Before	invoking	ask_name,	sender	object	is	:	#{self.class}”	

				p	“Before	invoking	ask_name,	receiver	object	is	:	#{x.class}”	

		end.ask_name		

end

The	message	receiver	is	student	object.

Summary
We	saw	an	example	for	implicit	sender	where	the	sender	object	was	implicit	and	hidden	in
the	code.	We	also	saw	that	implicit	sender	and	implicit	receiver	are	the	same	inside	the	do-
end	 block	 for	 the	 hail	 taxi	 program.	 What	 is	 the	 use	 of	 knowing	 that	 the	 sender	 and
receiver	are	the	same?	We	will	discuss	this	in	the	upcoming	chapters	on	Same	Sender	and
Receiver	and	Private	Methods.

Top	Level	Methods
In	this	chapter,	you	will	learn	that	the	methods	defined	in	the	top	level	context	are	bound
to	the	main	object.

What	is	Top	Level	Method?
Top	level	methods	are	methods	defined	in	the	top	level	scope.	They	are	not	inside	a	class
or	module.

Top	Level	Method
Let’s	define	a	method	at	the	top	level.

def	speak

		p	‘speaking’

end

Call	Top	Level	Method
We	can	call	this	method	like	this:

speak

This	prints:

speaking

Private	Method
Ruby	programs	bind	methods	defined	in	the	top	level	scope	to	main	as	private	methods.
We	can	verify	this:

p	self.private_methods.include?(:speak)

This	prints:

true

Inaccessible	in	the	Self
Ruby	programs	do	not	make	the	top	level	methods	available	in	the	self	object.

def	speak

		p	‘I	am	speaking’

end

p	self.public_methods.include?(:speak)

This	prints:

false

This	means,	if	you	call	speak	method	on	self:

self.speak

You	will	get	the	error:

NoMethodError:	private	method	‘speak’	called	for	main:Object

We	will	discuss	about	private	methods	and	how	the	sender	and	receiver	is	the	same	in	the
next	chapter.

The	IRB	Convenience
The	IRB	binds	methods	in	the	top	level	scope	to	main	as	public	methods	for	convenience.
We	can	verify	it	like	this:

$irb

>	def	speak

>			p	‘speaking’

>			end

	=>	:speak	

	>	speak

“speaking”

	=>	“speaking”	

	>	self.public_methods.include?(:speak)

	=>	true

Summary
In	this	chapter,	you	learned	that	the	methods	defined	in	the	top	level	context	are	bound	to
the	main	object.

Same	Sender	and	Receiver
In	this	chapter,	you	will	learn	that	when	the	sender	and	receiver	are	the	same,	we	cannot
use	an	explicit	receiver	to	call	a	private	method.

Functional	Form
Let’s	 define	 a	 private	 method	 start()	 in	 Car.	 And	 call	 it	 within	 drive()	 method	 in
functional	form.

class	Car

		def	drive

				start

		end

		private

		def	start

				p	‘starting…’

		end

end

c	=	Car.new

c.drive

This	prints:

starting…

Explicit	Receiver
Let’s	use	an	explicit	receiver	to	call	the	start()	private	method.

class	Car

		def	drive

				self.start

		end

		private

		def	start

				p	‘starting…’

		end

end

c	=	Car.new

c.drive

This	prints:

	NoMethodError:	private	method	‘start’	called	for	<Car:0x007fc5d303ee68>

This	results	in	the	same	output	as	the	following:

class	Car

		private

		def	start

				p	‘starting…’

		end

end

c	=	Car.new

c.start

The	self	and	the	Receiver
Let’s	 check	 the	 value	 of	 self	 inside	 the	drive()	method	 and	 the	 receiver	 of	 the	drive()
method.

class	Car

		def	drive

				p	“self	is	:	#{self}”

				self.start

		end

		private

		def	start

				p	‘starting…’

		end

end

c	=	Car.new

p	“receiver	is	:	#{c}”

c.drive

This	prints:

receiver	is	:	#<Car:0x007fdd8c1c5900>

self	is	:					#<Car:0x007fdd8c1c5900>

NoMethodError:	private	method	‘start’	called	for	#<Car:0x007fdd8c1c5900>

Inside	the	drive	method	the	sender	and	receiver	are	the	same.	The	sender	and	the	receiver
objects	are	the	same	instance	of	Car	class.	In	such	cases,	Ruby	does	not	allow	providing
an	explicit	receiver	when	you	want	to	call	a	private	method.

The	Public	Method
If	you	make	the	start()	method	public,	it	will	work.

class	Car

		def	drive

				self.start

		end

		def	start

				p	‘starting…’

		end

end

c	=	Car.new

c.drive

As	expected,	this	prints:

driving…

The	Protected	Method
Let’s	change	the	start()	method	to	protected.

class	Car

		def	drive

				self.start

		end

		protected

		def	start

				p	‘starting…’

		end

end

c	=	Car.new

c.drive

It	still	works.

Summary
You	 learned	what	happens	when	 the	 receiver	 and	 the	 sender	objects	 are	 the	 same	when
calling	a	private	method.	In	such	cases:

	

You	cannot	provide	an	explicit	receiver	to	call	a	private	method.
There	is	no	receiver	and	dot	symbol	to	send	a	message.
You	have	to	call	the	private	method	in	functional	form.

Top	Level	Private	Methods
In	 this	 chapter,	 you	 will	 learn	 how	 the	 top	 level	 context	 and	 private	 methods	 work
together.

Implicit	Receiver
Let’s	print	hello	in	the	standard	output.

puts	‘hello’

As	expected,	this	prints:

hello

Explicit	Receiver

If	you	use	an	explicit	receiver,	the	self	to	call	the	puts:

self.puts	‘hi’

We	get:

NoMethodError:	private	method	‘puts’	called	for	main:Object

This	is	because	puts	 is	a	private	method	in	Object.	In	Ruby	you	cannot	have	an	explicit
receiver	 to	 call	 a	 private	method.	Why?	Because,	when	 the	 sender	 and	 receiver	 are	 the
same,	you	cannot	use	an	explicit	receiver	to	send	a	message.

The	Kernel	Module
Where	does	the	private	method	puts()	live?	Let’s	search	for	methods	that	begin	with	put.

	Kernel.methods.grep(/put/)

This	prints:

[:putc,	:puts]

It	lives	in	Kernel	module.	Ruby	mixes	in	the	Kernel	module	into	the	Object	class.	That’s
how	it	is	available	as	a	private	method	on	the	Object.

Private	Method	and	Explicit	Receiver
How	do	we	grab	the	main,	the	top	level	default	object?	Let’s	grab	the	value	of	the	current
object	from	the	self	and	assign	it	to	our	own	variable	m.

m	=	self

m.puts	‘hi’

We	get	the	same	error	message	as	we	did	in	step	2.

NoMethodError:	private	method	‘puts’	called	for	main:Object

Why	do	we	get	this	error?	You	can	think	of	the	code	that	gives	error	to	be	equal	to	this:

class	Object

		private

		def	puts(arg)

			#	Implementation	for	printing	to	standard	output

		end

end

We	cannot	call	the	puts	private	method	with	an	explicit	receiver.

Forcing	an	Explicit	Receiver
We	can	use	send()	method	to	send	the	puts()	message	to	the	main	object:

m	=	self

m.send(:puts,‘hi’)

This	will	work.	This	is	the	same	as:

self.send(:puts,‘hi’)

But,	 this	breaks	 encapsulation	 and	 is	 generally	not	 a	good	 idea	unless	you	have	 a	good
reason	to	do	so.

Using	Method	Object
We	can	also	do	this:

	m	=	self.method(:puts)

	=>	#<Method:	Object(Kernel)#puts>	

	>	m.call(‘hello’)

hello

	=>	nil

You	 can	 see	 how	using	 the	method	 object	 displays	 the	 relationship	 between	 the	Kernel
module	and	Object	class.	The	puts()	method	is	available	by	mixing	in	the	Kernel	module
into	the	Object	class.

Summary
In	this	chapter	we	saw	how	the	private	methods	and	the	top	level	context	work	together.
The	concept	you	learned	in	the	previous	chapter	is	a	generalized	concept	of	the	concept	in
this	chapter.

Scope	of	Local	Variables
In	this	chapter,	you	will	learn	about	the	visibility	of	local	variables.

Scope
The	focus	is	on	using	language	constructs	such	as	def,	class	and	module	and	how	it	affects
the	visibility.

At	the	Top	Level
Visibility	of	Local	Variable
Let’s	look	at	an	example	where	we	have	a	local	variable	at	the	top	level	and	see	if	we	can
access	it	inside	a	top	level	method.

x	=	1

p	x

def	test

		p	x

end

test

This	prints	1	and	then	the	error.

NameError:	undefined	local	variable	or	method	‘x’	for	main:Object

Thus,	we	can	see	that	 the	top	level	 local	variable	x	is	not	accessible	 inside	the	top	level
method.

We	can	verify	this	fact	by	asking	Ruby.

x	=	1

p	“Local	variables	at	the	top	level	:	#{local_variables}”

def	test

		p	“Local	variables	inside	the	test	method	:	#{local_variables}”

end

test

This	prints:

Local	variables	at	the	top	level	:	[:x]

Local	variables	inside	the	test	method	:	[]

This	shows	that	at	 the	top	level,	 there	is	a	local	variable	x,	whereas,	 inside	the	top	level
method,	there	is	none.	This	is	an	example	where	self	does	not	change	but	scope	changes.

Any	variables	defined	within	a	method	goes	out	of	scope	when	we	exit	the	method.	The
local	variable	is	garbage	collected.	For	instance,	any	variable	defined	in	a	learn	method	is
not	available	outside	of	that	method.

The	diagram	illustrates	the	life	time	of	a	variable	defined	within	a	method.

Inside	a	Top	Level	Method
Local	Variables	in	Different	Scopes
What	 happens	 if	 we	 define	 a	 local	 variable	 inside	 the	 top	 level	 method?	 Let’s	 write	 a
simple	program	that	defines	local	variable	at	the	top	level	and	inside	a	top	level	method.

x	=	1

p	“At	top	level	x	is	:	#{x}”

def	test

		x	=	2

		p	“Inside	the	top	level	method	x	is	:	#{x}”

end

test

p	“Back	at	the	top	level	x	is	:	#{x}”

This	prints:

At	top	level	x	is	:	1

Inside	the	top	level	method	x	is	:	2

Back	at	the	top	level	x	is	:	1

Top	level	has	its	own	scope.	The	method	definition	has	its	own	scope.

That’s	why	we	see	x	is	1	at	top	level	and	it	is	2	inside	the	method	definition.	The	variable
names	 are	 the	 same.	 However,	 the	 x	 at	 the	 top	 level	 and	 the	 x	 inside	 the	 method	 are
variables	in	different	scopes.	Thus,	they	are	different.

This	is	an	example	where	self	does	not	change,	but	scope	changes.	We	know	that	the	self
is	main	at	the	top	level	as	well	as	inside	the	method.

Let’s	trace	the	local	variables	in	different	scopes	as	the	program	executes.

x	=	1

p	“At	the	top	level	local	variables:”

p	local_variables

def	test

		x	=	2

		p	“Inside	the	top	level	method,	local	variables:”

		p	local_variables

end

test

This	prints:

At	the	top	level	local	variables:

[:x]

Inside	the	top	level	method,	local	variables:

[:x]

The	name	of	the	local	variables	is	the	same.	From	the	previous	experiment	we	know	they
are	different.

Inside	a	Class
Visibility	of	Local	Variable
What	happens	when	we	try	to	access	a	local	variable	defined	at	the	top	level	from	a	class?

x	=	1

class	A

		p	x

end

This	gives	us	the	error:

NameError:	undefined	local	variable	or	method	‘x’	for	A:Class

The	local	variable	x	defined	at	the	top	level	is	not	visible	within	the	class.

This	is	an	example	where	both	self	and	scope	changes.

Local	Variables	in	Different	Scopes
Let’s	write	 a	 simple	 program	 that	 defines	 a	 local	 variable	 at	 the	 top	 level	 and	 inside	 a
class.

x	=	1

p	“At	the	top	level,	x	is	#{x}”

class	A

		x	=	2

		p	“Inside	the	class,	x	is	:	#{x}”

end

p	“Back	at	the	top	level,	x	is	#{x}”

This	prints:

At	the	top	level,	x	is	1

Inside	the	class,	x	is	:	2

Back	at	the	top	level,	x	is	1

The	value	of	x	inside	the	class	is	different	from	the	x	at	the	top	level.	Variables	inside	the
class	have	its	own	scope.	The	x	at	the	top	level	is	different	from	the	x	inside	the	class.

This	 is	an	example	where	both	self	and	scope	changes.	The	self	at	 the	 top	 level	 is	main
and	the	self	inside	the	class	is	A.

Let’s	trace	the	local	variables.

x	=	1

p	“Local	variables	at	the	top	level	:	#{local_variables}”

class	A

		x	=	2

		p	“Local	variables	inside	the	class	:	#{local_variables}”

end

This	prints:

Local	variables	at	the	top	level	:	[:x]

Local	variables	inside	the	class	:	[:x]

The	name	of	the	local	variable	is	the	same.	But	they	are	different	because	they	belong	to
different	scopes.	The	first	one	belongs	to	the	top	level	and	the	second	one	belongs	to	the
method	level	scope.

Let’s	take	a	look	an	example.

x	=	1

p	“Local	variables	at	the	top	level	:	#{x}”

class	A

		x	=	2

		p	“Local	variables	inside	the	class	:	#{x}”

end

p	“Local	variables	at	the	top	level	:	#{x}”

This	prints:

Local	variables	at	the	top	level	:	1

Local	variables	inside	the	class	:	2

Local	variables	at	the	top	level	:	1

Inside	a	Module
Visibility	of	Local	Variable
What	 happens	 when	 we	 try	 to	 access	 a	 local	 variable	 defined	 at	 the	 top	 level	 from	 a
module?

x	=	1

module	B

		p	x

end

This	gives	us	the	error:

NameError:	undefined	local	variable	or	method	‘x’	for	B:Module

The	local	variable	x	defined	at	the	top	level	is	not	visible	within	the	module.

This	is	an	example	where	both	self	and	scope	changes.

Local	Variables	in	Different	Scopes
Let’s	 write	 a	 simple	 program	 that	 defines	 local	 variable	 at	 the	 top	 level	 and	 inside	 a
module.

x	=	1

p	“At	the	top	level,	x	is	:	#{x}”

module	B

		x	=	2

		p	“Inside	the	module,	x	is	:	#{x}”

end

p	“Back	at	the	top	level,	x	is	:	#{x}”

This	prints:

At	the	top	level,	x	is	:	1

Inside	the	module,	x	is	:	2

Back	at	the	top	level,	x	is	:	1

The	variables	inside	Module	also	have	its	own	scope.

The	self	and	scope	both	change	in	this	example.	The	self	is	main	at	the	top	level	and	the
self	is	B	inside	the	module.

Discovery	Exercise
Write	a	program	to	trace	the	local	variables	for	the	above	example.

The	Grand	Example
Let’s	combine	top	level,	class	definition	and	method	definition	into	one	example.

x	=	1

p	“At	the	top	level,	x	is	:	#{x}”

def	test

		x	=	2

		p	“Inside	top	level	method,	x	is	:	#{x}”

end

test	

class	A

		x	=	3

		p	“Inside	the	class,	x	is	:	#{x}”

end

module	B

		x	=	4

		p	“Inside	the	module,	x	is	:	#{x}”

end

p	“Back	at	the	top	level,	x	is	:	#{x}”

This	prints:

At	the	top	level,	x	is	:	1

Inside	top	level	method,	x	is	:	2

Inside	the	class,	x	is	:	3

Inside	the	module,	x	is	:	4

Back	at	the	top	level,	x	is	:	1

We	see	that	top	level,	top	level	method,	class	and	module	have	their	own	scopes	and	the
value	of	x	is	specific	to	their	own	scope.

In	the	last	example,	does	the	self	and	scope	change	together?	If	so,	what	are	their	values	as
the	program	executes?

Here	is	a	summary	of	how	self	and	scope	changes.

		Self		 		Scope		 		Where		
		No	Change		 		Changes		 		Top	Level	and	Top	Level	Method		

		Changes		 		Changes		 		Top	Level	and	Inside	Class		
		Changes		 		Changes		 		Top	Level	and	Inside	Module		

Summary
In	this	chapter,	we	experimented	with	the	scope	of	variables	in	four	different	scenarios.

	

1.	 At	top	level	scope
2.	 Method	definition	scope
3.	 Class	definition	scope
4.	 Module	definition	scope

We	 found	 that	 each	 of	 these,	 have	 their	 own	 local	 variables.	 The	 class,	module	 or	 def
keyword	creates	a	new	local	scope.

Scope	of	Variables	Redux
In	 this	 chapter,	 you	 will	 learn	 about	 the	 visibility	 of	 local	 variables	 in	 the	 context	 of
dynamic	language	constructs	such	as	define_method,	Class.new	and	Module.new.

Scope
How	 does	 dynamically	 defining	methods,	 classes	 and	modules	 affect	 the	 local	 variable
visibility?

At	the	Top	Level
Visibility	of	Local	Variable

x	=	1

p	“At	top	level	x	:	#{x}”

define_method(:test)	do

		p	“Inside	top	level	method	x	:	#{x}”

end

test

This	prints:

At	top	level	x	:	1

Inside	top	level	method	x	:	1

The	local	variable	is	visible	inside	the	dynamically	defined	method.

We	can	verify	it	by	checking	the	local	variables.

x	=	1

p	“At	top	level	local_variables	is	:	#{local_variables}”

define_method(:test)	do

		p	“Local	variable	inside	the	method	:	#{local_variables}”

end

test

p	“Back	at	the	top	level	local_variables	is	:	#{local_variables}”

This	prints:

At	top	level	local_variables	is	:	[:x]

Local	variable	inside	the	method	:	[:x]

Back	at	the	top	level	local_variables	is	:	[:x]

The	 local	 variable	 defined	 at	 the	 top	 level	 is	 visible	 inside	 the	 dynamically	 defined
method.

The	Value	of	Self
Does	the	value	of	self	change?	Let’s	check:

x	=	1

p	“At	top	level	self	:	#{self}”

define_method(:test)	do

		p	“Inside	top	level	method	self	:	#{self}”

end

test

This	prints:

At	top	level	self	:	main

Inside	top	level	method	self	:	main

The	value	of	self	remains	the	same.

Inside	the	Top	Level	Method
x	=	1

p	“At	top	level	x	is	:	#{x}”

define_method(:test)	do

		x	=	2

		p	“Inside	the	top	level	method	x	is	:	#{x}”

end

test

p	“Back	at	the	top	level	x	is	:	#{x}”

This	prints:

At	top	level	x	is	:	1

Inside	the	top	level	method	x	is	:	2

Back	at	the	top	level	x	is	:	2

The	scope	did	not	change.	Thus,	the	x	at	the	top	level	and	inside	the	method	is	the	same.

At	the	Top	Level
Inside	a	Class
Let’s	 check	 if	 we	 can	 see	 the	 local	 variable	 declared	 at	 the	 top	 level	 from	 inside	 a
dynamically	defined	class.

x	=	1

p	“At	top	level	x	:	#{x}”

Car	=	Class.new	do

		p	“Inside	the	Car	class	x	:	#{x}”

end

This	prints:

At	top	level	x	:	1

Inside	the	Car	class	x	:	1

The	local	variables	defined	at	the	top	level	is	visible	inside	the	Car	class.

We	can	print	the	local	variables	to	verify	that	the	variable	x	is	the	same.

x	=	1

p	“At	top	level	:	#{local_variables}”

Car	=	Class.new	do

		p	“Inside	the	Car	class	:	#{local_variables}”

end

This	prints:

At	top	level	:	[:x]

Inside	the	Car	class	:	[:x]

Value	of	Self

Does	the	value	of	self	change?	Let’s	check:

x	=	1

p	“At	top	level,	self	:	#{self}”

Car	=	Class.new	do

		p	“Inside	the	Car	class,	self	:	#{self}”

end

This	prints:

At	top	level,	self	:	main

Inside	the	Car	class,	self	:	#<Class:0x007fff331c45f0>

The	self	changes	from	main	to	an	instance	of	Class.

Variable	with	Same	Name	Inside	a	Class
What	happens	when	you	have	a	variable	with	the	same	name	inside	the	class?

x	=	1

p	“At	top	level	x	:	#{x}”

Car	=	Class.new	do

		x	=	2

		p	“Inside	the	Car	class	x	:	#{x}”

end

p	“Back	at	the	top	level	:	#{x}”

This	prints:

At	top	level	x	:	1

Inside	the	Car	class	x	:	2

Back	at	the	top	level	:	2

This	changes	the	value	of	the	same	local	variable	defined	at	the	top	level.

At	the	Top	Level
Inside	a	Module
Let’s	 check	 if	 we	 can	 see	 the	 local	 variable	 declared	 at	 the	 top	 level	 from	 inside	 a
dynamically	defined	module.

x	=	1

p	“At	top	level	x	:	#{x}”

Driveable	=	Module.new	do

		p	“Inside	the	Driveable	module	x	:	#{x}”

end

This	prints:

At	top	level	x	:	1

Inside	the	Driveable	module	x	:	1

The	local	variables	defined	at	the	top	level	is	visible	inside	the	do-end	block	of	creating	a
module.

We	can	print	the	local	variables	to	verify	it.

x	=	1

p	“At	top	level	:	#{local_variables}”

Driveable	=	Module.new	do

		p	“Inside	the	Driveable	module	:	#{local_variables}”

end

This	prints:

At	top	level	:	[:x]

Inside	the	Driveable	module	:	[:x]

Value	of	Self
Does	the	value	of	self	change	inside	the	do-end	block?	Let’s	check:

x	=	1

p	“At	top	level,	self	:	#{self}”

Driveable	=	Module.new	do

		p	“Inside	the	Driveable	module,	self	:	#{self}”

end

This	prints:

At	top	level,	self	:	main

Inside	the	Driveable	module,	self	:	#<Module:0x007f840>

The	self	changes	from	main	to	an	instance	of	Module.

Variable	with	Same	Name	Inside	a	Module
What	happens	when	you	have	a	variable	with	the	same	name	inside	the	do-end	block	of
creating	a	Module?

x	=	1

p	“At	the	top	level,	x	:	#{x}”

Driveable	=	Module.new	do

		x	=	2

		p	“Inside	the	Driveable	module,	x	:	#{x}”

end

p	“Back	at	the	top	level,	x	:	#{x}”

This	prints:

At	the	top	level,	x	:	1

Inside	the	Driveable	module,	x	:	2

Back	at	the	top	level,	x	:	2

This	changes	value	of	the	same	local	variable	defined	at	the	top	level.

	

The	 local	variable	defined	at	 the	 top	 level	 is	visible	 inside	 the	dynamically	defined
method.
The	scope	does	not	change.	Thus,	the	x	at	the	top	level	and	inside	the	method	is	the
same.
The	 local	 variables	 defined	 at	 the	 top	 level	 is	 visible	 inside	 the	 do-end	 block	 of
creating	the	Car	class.
The	scope	does	not	change.	Thus,	the	x	at	the	top	level	and	inside	the	do-end	block	of
creating	a	new	instance	of	Class	is	the	same.
The	self	changes	from	main	to	an	instance	of	the	Class.
The	 local	 variables	 defined	 at	 the	 top	 level	 is	 visible	 inside	 the	 do-end	 block	 of
creating	the	Driveable	module.
The	scope	does	not	change.	Thus,	the	x	at	the	top	level	and	inside	the	module	is	the
same.
The	self	changes	from	main	to	an	instance	of	Module.

Here	 is	 a	 summary	 of	what	 happens	 to	 self	 and	 scope	when	we	 use	 dynamic	 language
constructs	of	Ruby.

		Self		 		Scope		 		Where		
		No	Change		 		No	Change		 		Top	Level	and	Top	Level	Method		
		Changes		 		No	Change		 		Top	Level	and	Inside	Class		
		Changes		 		No	Change		 		Top	Level	and	Inside	Module		

Summary
In	this	chapter,	you	learned	that	when	we	dynamically	define	a	method,	class	or	module,
the	scope	does	not	change.	The	dynamic	creation	of	a	method	does	not	change	the	value	of
self,	 it	 remains	 main.	 For	 dynamic	 creation	 of	 class	 and	 module,	 the	 self	 changes	 as
summarized	in	the	table.

		Dynamic	Construct		 		Self		
		Class.new		 		Instance	of	Class		
		Module.new		 		Instance	of	Module		

Every	Object	is	an	Instance	of	a	Class
In	this	chapter,	you	will	learn	that	every	class	is	an	instance	of	a	Ruby	built-in	class	called
Class.

User	Defined	Class
Let’s	take	a	look	at	user	defined	classes.

class	Car	

		def	drive

				puts	‘driving…’

		end

end

We	can	send	the	drive()	message	to	the	car	instance	car.

car.drive

This	prints:

driving…

We	created	an	instance	of	our	car	class	and	called	the	drive()	method.

Car	Class	is	an	Object
The	class	Car	we	defined	 is	an	object.	 If	 that	 is	 the	case,	 then	 the	Car	class	must	be	an
instance	of	some	class.	What	is	that	class?

class	Car	

		def	drive

				puts	‘driving…’

		end

end

p	Car.class

This	prints:

Class

The	Car	class	is	an	instance	of	a	class	called	Class.

The	class	Keyword
Why	is	Car	class	an	instance	of	Ruby’s	built-in	Class?	When	you	use	the	Ruby	language
keyword	class,	Ruby	uses	Class	to	create	Car	object.	Ruby	does	something	like	this:

Car	=	Class.new

If	you	print	the	class	of	Car:

p	Car.class

It	prints:

Class

Creating	Car	Class	using	Class
We	can	rewrite	the	example	like	this:

Car	=	Class.new	do

		def	drive

				p	‘driving’

		end

end

car	=	Car.new

car.drive

This	also	prints:

driving

Rhonda	Asks
Why	would	you	want	to	create	a	Car	class	using	Class.new	?

The	reason	is	that	the	scope	of	variables	defined	before	the	class	definition	is	visible	inside
the	do-end	block.

x	=	1

Car	=	Class.new	do

		p	x

end

This	prints	1,	but	what	happens	if	we	define	a	Car	class	using	the	class	keyword?

x	=	1

class	Car

		p	x

end

This	results	in:

NameError:	undefined	local	variable	or	method	‘x’	for	Car:Class

The	x	is	not	visible	inside	the	class	definition.	The	reason	is	that	the	class	keyword	creates
a	new	scope.	Let’s	verify	this	by	writing	a	program.	We	can	print	the	local	variables	at	the
top	level	and	inside	the	Car	class.

x	=	1

p	‘Local	variables	at	top	level’

p	local_variables

class	Car

		p	‘Local	variables	inside	the	class’

		p	local_variables

end

This	prints:

Local	variables	at	top	level

[:x]

Local	variables	inside	the	class

[]

This	shows	that	at	the	top	level,	we	have	x	as	the	local	variable,	whereas,	inside	the	Car
class,	there	is	none.

Scope	of	Local	Variable	Inside	a	Block
Let’s	write	a	simple	program	to	check	the	local	variables	at	the	top	level	and	inside	the	do-
end	block	of	a	Class.new	call.

x	=	1

p	‘Local	variables	at	top	level:’

p	local_variables

Car	=	Class.new	do

		p	‘Local	variables	inside	the	do-end	block’

		p	local_variables

end

This	prints:

Local	variables	at	top	level:

[:x]

Local	variables	inside	the	do-end	block

[:x]

This	shows	that	we	have	the	same	local	variable	x	at	the	top	level	as	well	as	the	do-end
block.

Methods	Defined	in	Class
The	Class	 is	 Ruby’s	 built-in	 class	 that	 provides	 the	 new()	 method	 that	 we	 can	 use	 to
instantiate	the	car	object.

p	Class.public_instance_methods(false).sort

This	prints:

[:allocate,	:new,	:superclass]

As	 a	 developer	 you	 will	 not	 call	 allocate()	 method.	 You	 will	 use	 the	 new()	 and
superclass()	methods.

The	new	Instance	Method
Since	Car	is	an	object	you	can	call	the	instance	method	new	like	this:

car	=	Car.new

Because	new	 is	an	 instance	method	provided	by	Ruby’s	built-in	class	called	Class.	The
above	example	is	like:

car_class	=	Class.new	do

		def	drive

				p	‘driving’

		end

end

car_object	=	car_class.new

car_object.drive

Class	names	 in	Ruby	must	begin	with	Capital	 letter.	That’s	 the	 reason	we	don’t	name	a
class	with	 lowercase	 like	 car_class,	we	 use	Car.	 In	 this	 example,	 the	 name	 car_class	 is
used	to	make	it	clear	that	the	class	Car	is	an	object	that	can	respond	to	new	message.

Summary
In	this	chapter	we	saw	that	the	car	object	is	an	instance	of	a	user	defined	Car	class.	The
class	can	either	be	user	defined	or	Ruby	built-in	classes.	In	the	next	section,	we	will	see
that	Ruby	built-in	classes	are	also	objects.

Instance	Methods	and	Instance	Variables
In	 this	chapter,	you	will	 learn	where	 the	 instance	methods	and	 instance	variables	 live	 in
Ruby.

Greeting	Example
Let’s	look	at	a	simple	example	that	we	can	use	to	experiment	and	learn.

class	Greeter

		def	initialize(text)

				@text	=	text

		end

		def	greet

				@text

		end

end

greeter	=	Greeter.new(‘Hi’)

p	greeter.class

This	prints:

Greeter

Instance	Methods	of	Greeter	Class
We	know	the	instance	of	Greeting;	the	greeter	object	gets	created	using	the	Greeter	class.
We	can	also	get	the	instance	methods	as	follows:

p	greeter.class.instance_methods(false)

This	prints:

[:greet]

The	methods	defined	in	a	class	becomes	instance	methods	available	to	the	objects	of	that
class.

Instance	Variables	of	Greeter	Object
Let’s	look	at	the	instance	variables	of	the	object	o.

p	greeter.instance_variables

This	prints:

[:@text]

The	instance	variables	live	in	the	specific	objects	we	create.

Fabio	Asks
Can	we	have	many	instance	variables	in	a	class?

Yes.	For	instance,	we	could	have	text	and	language	as	the	instance	variables.

In	code,	it	would	look	like	this:

class	Greeter

		def	initialize(text,	language)

				@text	=	text

				@language	=	language

		end

		def	greet

				“In	#{@language},	it’s	#{@text}”

		end

end

greeter	=	Greeter.new(‘Hi’,	‘English’)

p	greeter.welcome

This	prints:

In	English,	it’s	Hi

Instance	Methods	of	String
Ruby’s	built-in	classes	also	have	instance	methods.	Let’s	experiment	with	the	Ruby	built-
in	String	class.

	>	s	=	‘hi’

	=>	“hi”	

	>	s.instance_methods

NoMethodError:	undefined	method	`instance_methods’	for	“hi”:String

				from	(irb):3

				from	/Users/bparanj/.rvm/rubies/ruby-2.3.0/bin/irb:11:in	`

We	 get	 an	 error	 when	 we	 call	 instance_methods	 on	 the	 string	 object.	 Let’s	 call
instance_methods	on	the	String	class.

	>	String.instance_methods

	 =>	 [:<=>,	 :==,	 :===,	 :eql?,	 :hash,	 :casecmp,	 :+,	 :*,	 :%,	 :[],	 :

[]=,	:insert,	:length,	:size,	:bytesize,	:empty?,	:=~,	:match,	:succ,	:succ!,	:next,	:next!,	:upto

We	see	 lots	of	methods	defined	 in	 the	String	 class.	Let’s	 call	 the	 length	method	on	 the
string	object.

	>	s.length

	=>	2

It	prints	2.

Summary
In	 this	 chapter,	we	were	 able	 to	 query	 for	 instance	 variables	 and	 instance	methods.	We
learned	 that	 the	 instance	methods	 live	 in	 the	class	 and	 the	 instance	variables	 live	 in	 the
object.	Objects	share	instance	methods.	Instance	variables	are	not	shared	between	objects.

Block	Object
In	this	chapter,	you	will	learn	about	block	objects	and	delayed	execution	of	the	code	in	a
block	object.

What	is	a	Block?
A	 block	 is	 a	 chunk	 of	 code	 that	 is	 enclosed	 between	 the	 curly	 braces	 or	 do-end.	 Let’s
create	a	simple	block	that	prints	hi.

{	puts	‘hi’	}

If	you	run	this	program,	you	will	get	the	error:

syntax	error,	unexpected	tSTRING_BEG,	expecting	keyword_do	or	’{‘	or	’(‘

We	enclosed	a	chunk	of	code	using	the	curly	braces,	but,	it	is	not	valid	syntax	in	Ruby.

Converting	a	Block	into	an	Object
We	can	use	Proc,	lambda	or	the	literal	constructor	->	to	convert	a	block	into	an	Object.

->	{	puts	‘hi’	}

If	you	run	this	program,	you	will	not	get	any	syntax	error.	But,	it	will	not	print	anything	to
the	standard	output.

Delayed	Execution
Why	did	not	print	hi?	If	you	had	written:

puts	‘hi’

Running	this	will	print	hi.	What	is	the	difference?	We	converted	the	block	into	an	object.
What	is	this	object?	Let’s	find	out.

p	->	{	puts	‘hi’	}

This	prints:

#<Proc:0x007fb1f0@untitled	2:16	(lambda)>

The	output	 shows	 the	memory	 location	of	 the	Proc	object,	but	 it	 also	has	 lambda.	Let’s
make	the	output	easy	to	read.	We	can	check	the	class	of	the	returned	Proc	object.

greet	=	->	{	puts	‘hi’	}

puts	greet.class

We	assigned	the	value	returned	after	conversion	to	a	variable.	Then,	we	print	the	class	of
that	object.	This	prints:

Proc

Now	we	know	that	using	the	literal	constructor	created	a	Proc	object.	We	can	execute	the
code	by	sending	a	call	message	to	the	Proc	object.

greet	=	->	{	puts	‘hi’	}

greet.call

This	prints:

hi

This	 is	 how	 block	 objects	 exhibit	 delayed	 execution	 by	 nature.	 The	 above	 example	 is
equal	to	this:

def	greet

		puts	‘hi’

end

greet

This	version	of	the	example	has	a	name	for	the	method	that	we	can	call,	the	greet	method.
The	Proc	version	of	the	example	has	no	name	for	the	method.	The	block	we	converted	into
an	object	is	an	anonymous	function.	It	has	no	name.	The	greet	variable	is	a	pointer	to	an

anonymous	function.	We	call	the	anonymous	function	by	sending	call	message	to	it.

Fabio	Asks
Why	do	we	need	to	assign	the	Proc	object	to	a	variable?

Why	not	just	do	this:

->	{	puts	‘hi’	}.call

Yes,	this	will	work.	We	are	calling	the	anonymous	function	by	sending	the	call	message	to
it.	 In	 this	 case,	 we	 are	 not	 taking	 advantage	 of	 delayed	 execution	 that	 block	 objects
provide	us.

Rhonda	Asks
What	is	the	advantage	of	assigning	it	to	a	variable?

Methods	can	 take	 this	proc	object	as	an	argument	and	execute	 them	by	sending	 the	call
message.	Thus,	the	code	can	be	re-used	in	different	scenarios.

Summary
In	this	chapter,	you	learned	how	to	convert	a	block	into	an	object	and	delayed	execution	of
the	code	in	a	block	object.

Closures
In	this	chapter,	you	will	 learn	about	the	basics	of	closures	and	how	you	can	use	them	to
execute	code	in	different	execution	contexts.

What	is	closure?
A	closure	is	an	anonymous	function	that	carries	its	creation	context	where	ever	it	goes.

Block	Objects	are	Closures
Changing	the	Value	Outside	a	Block
Let’s	 write	 a	 simple	 program	 to	 illustrate	 what	 happens	 to	 the	 block	 object	 when	 we
change	the	values	of	a	local	variable.

x	=	0

seconds	=	->	{	x	}

p	seconds.call

This	prints:

0

Let’s	change	the	value	of	x	and	print	it.

x	=	0

seconds	=	->	{	x	}

p	seconds.call

x	=	1

p	seconds.call

This	prints:

0

1

The	value	of	x	is	changed	to	1	after	the	block	object	is	created.	But,	the	change	is	reflected
when	 we	 execute	 the	 code	 in	 the	 block	 object.	 This	 illustrates	 that	 the	 identifier	 x	 is
actually	a	reference	to	Fixnum	object.

If	you	change	that	reference	to	point	to	a	different	Fixnum	object,	it	will	point	to	it.

Changing	the	Value	Inside	a	Block
Let’s	write	a	simple	program	to	illustrate	what	happens	when	the	value	changes	inside	the
block.

x	=	0

seconds	=	->	{	x	+=	1	}

p	seconds.call

p	seconds.call

p	seconds.call

p	seconds.call

This	prints:

1

2

3

4

The	counter	increases	by	one	on	each	call.

Carrying	the	State	Around
The	block	encapsulates	the	state.	Earlier,	we	saw	that	we	can	pass	this	Proc	object	as	an
argument	to	a	method.	What	happens	when	we	have	another	variable	with	the	same	name
in	that	method?

x	=	0

seconds	=	->	{	x	+=	1	}

def	tester(s)

		x	=	100

		p	s.call

		p	s.call

		p	s.call

		p	s.call		

end

tester(seconds)

This	prints:

1

2

3

4

The	variable	x	with	the	value	100	inside	the	tester	method	did	not	have	any	effect	on	the
Proc	object.	This	illustrates	an	important	concept.	The	block	object	carries	the	state	found
at	the	point	of	its	creation.	In	our	example,	it	is	this	line:

seconds	=	->	{	x	+=	1	}

At	 this	 line,	 the	 value	 of	 x	was	 0.	 It	 carries	 this	 value	 into	 the	 new	 scope	 of	 the	 tester
method.	We	already	know	that	methods	create	a	new	scope	and	x	=	100	is	in	a	new	scope.
The	identifier	names	are	the	same	but	they	belong	to	different	execution	contexts.	One	at
the	top	level	scope	and	the	other	at	the	method	definition	scope.

The	 block	 object	 encapsulates	 the	 state.	 In	 this	 case,	 the	 value	 of	 x.	 The	 x	 gets
incremented	 every	 time	we	 call	 the	 block	 object	 by	 sending	 the	 call	message.	When	 a
piece	of	code	carries	its	creation	context	around	with	it	like	this,	we	call	it	closure.

Insight
You	 can	 execute	 code	 in	 a	 different	 execution	 context	 without	 using	 eval	 by	 using
closures.

We	captured	the	binding	at	the	top	level	scope	in	a	block	object	and	executed	the	code	in
the	block	object	in	the	method	level	scope.

Twin	Analogy
Haylee	and	Kaylee	are	twins	who	live	together	in	San	Francisco.

Haylee	is	going	on	a	business	trip	to	New	York.

She	packs	a	tooth	paste	that	is	100%	full	in	her	suitcase.	The	packing	of	the	suitcase	is	the
creation	of	 the	proc	object	using	 the	 literal	constructor,	 ->.	The	 top	 level	 context	 is	San
Francisco.	The	InNewYork	class	represents	New	York	location.

toothpaste_level	=	100

p	“In	SF	:	#{toothpaste_level}”

brush	=	->	{	toothpaste_level	-=	5	}

brush.call

p	“After	brushing	in	SF	:	#{toothpaste_level}”

class	InNewYork

		def	get_ready(block)

				p	“Brushing	in	NY”

				current_level	=	block.call

				p	“In	NY	:	#{current_level}”

		end

end

InNewYork.new.get_ready(brush)

p	“In	SF	:	#{toothpaste_level}”

This	prints:

In	SF	:	100

After	brushing	in	SF	:	95

Brushing	in	NY

In	NY	:	90

In	SF	:	90

When	Haylee	brushes	her	teeth	in	New	York,	the	mirror	image	of	that	 toothpaste	in	San
Francisco	is	affected.	Kaylee	in	San	Francisco	observes	the	toothpaste	usage	of	her	twin	in
New	York.	Of	course,	 in	 reality	physical	objects	cannot	be	 in	 two	 locations	at	 the	same
time.	But,	that’s	how	closures	behave	in	a	programming	environment.

Evaluating	Code	using	Binding	Object
Execute	Code	in	Top	Level	Context
The	block	objects	provide	a	binding	method	that	we	can	use	to	execute	code.	Here	is	an
example	to	illustrate	that	concept.

x	=	1

o	=	->	{	x	}

def	tester(b)

		x	=	10

		eval(‘x’,	b)

end

p	tester(o.binding)

This	prints	1.	Inside	the	tester	method	the	value	of	x	is	10.	But,	we	execute	code	in	the	top
level	execution	context	by	passing	in	the	binding	of	the	block	object.	Thus,	the	value	of	x
is	1	inside	the	tester	method.

Execute	Code	in	Method	Level	Context
How	can	we	switch	the	execution	context	to	the	method	level	scope?	Here	is	an	example.

x	=	1

o	=	->	{	x	}

def	tester

		x	=	10

		eval(‘x’,	binding)

end

p	tester

This	prints	10.	The	binding	call	inside	the	tester	method	provides	the	execution	context
within	 that	method.	 Thus,	 the	 x	 =	 10	 initialized	 value	 is	 available	 in	 the	method	 level
scope.

Execute	Code	in	an	Object	Context
In	the	previous	chapter,	we	could	not	call	the	private	binding	method	of	an	object.	Here	is
that	example.

class	Car

		def	initialize(color)

				@color	=	color

		end

		def	drive

				‘driving’

		end		

end

car	=	Car.new(‘red’)

p	eval(“@color”,	car.binding)

This	gave	us	the	error:

NoMethodError:	private	method	‘binding’	called	for	#<Car:0x0570	@color=“red”>

We	can	make	this	example	work	by	accessing	the	binding	within	the	car	object.

class	Car

		def	initialize(color)

				@color	=	color

		end

		def	drive

				‘driving’

		end		

		def	context

				binding

		end

end

car	=	Car.new(‘red’)

p	eval(“@color”,	car.context)

This	 prints	 red.	 We	 can	 also	 use	 the	 binding	 of	 a	 block	 object	 to	 access	 the	 instance
variable.

class	Car

		def	initialize(color)

				@color	=	color

		end

		def	drive

				‘driving’

		end		

		def	null_proc

				->	{	}

		end

end

car	=	Car.new(‘red’)

p	eval(“@color”,	car.null_proc.binding)

This	also	prints	red.	This	illustrates	the	concept	that	the	null_proc	is	a	closure.	Let’s	check
the	class	of	the	null_proc.

p	car.null_proc.class

This	 prints	 Proc.	 The	 null_proc	 is	 bound	 to	 the	 execution	 context	 that	 can	 access	 the
instance	variable	of	the	car	object.	The	binding	instance	method	on	the	Proc	class	exposes
the	execution	context.

You	can	also	replace	the	existing	null_proc	implementation	with:

Proc.new{	}

This	creates	a	proc	object	from	an	empty	block.	This	will	still	work.

Summary
In	this	chapter,	you	learned	the	basics	of	closures.	You	also	learned	how	to	execute	code	in
different	contexts	using	closures.

Focus	on	Messages
In	this	chapter,	you	will	learn	how	to	write	message	centric	Ruby	programs.

Avoid	Over	Emphasis	on	Objects
Alan	Kay	coined	the	term	Object	Oriented	Programming.	He	has	expressed	regret	that	he
overemphasized	the	benefits	of	objects.

I’m	sorry	that	I	long	ago	coined	the	term	“objects”	for	this	topic	because	it	gets	many
people	to	focus	on	the	lesser	idea.	The	big	idea	is	“messaging”.	The	Japanese	have	a
small	 word	 -	 ma	 -	 for	 “that	 which	 is	 in	 between”	 -	 perhaps	 the	 nearest	 English
equivalent	is	“interstitial”.

The	 key	 in	 making	 great	 and	 grow-able	 systems	 is	 much	more	 to	 design	 how	 its
modules	communicate	rather	than	what	their	internal	properties	and	behaviors	should
be.

																														—	Alan	Kay

Sending	a	Message
In	Smalltalk,	you	can	send	factorial	message	to	a	number	object.	 In	Ruby,	when	you	do
the	same:

3.factorial

You	will	get	an	error:

NoMethodError:	undefined	method	‘factorial’	for	3:Fixnum

Open	Fixnum	Class
Ruby	is	flexible,	 it	has	open	classes.	We	can	open	the	Fixnum	class	and	define	factorial
method.

class	Fixnum

		def	factorial

				(1..self).reduce(1,	:*)

		end

end

We	can	now	send	factorial	method	to	the	Fixnum	object.

p	3.factorial

This	prints:

6

The	above	solution	looks	much	more	elegant	than	doing:

Factorial.compute(3)

Using	Refinements
It	 is	 debatable	whether	 opening	 a	 Fixnum	 class	 to	 define	 factorial	 is	 a	 good	 idea.	 It	 is
better	to	use	refinements	instead	to	avoid	global	impact	in	your	programs.

module	MyModule

		refine	Fixnum	do

				def	factorial

						(1..self).reduce(1,	:*)

				end			

		end

end

using	MyModule

p	3.factorial

This	prints	the	same	value	6.	There	is	a	drawback	to	this	approach.	We	need	to	know	the
name	of	the	module	in	the	using	declaration	before	we	can	call	the	factorial	method.	This
creates	a	dependency.	 It’s	a	 trade-off	you	need	 to	make	between	reducing	 the	 impact	vs
knowing	the	name	of	a	module.

Summary
In	this	chapter,	you	learned	how	you	can	make	your	Ruby	programs	more	message	centric.
We	 can	 use	 open	 classes	 and	 refinements	 for	 this	 purpose.	 The	 real	 power	 is	 in	 the
messaging.

Self	and	Scope	Toolbox
A	good	grasp	of	how	the	self	and	scope	changes	is	helpful	to	become	good	at	Ruby.	The
table	below	summarizes	how	they	change.

		Self		 		Scope		 		Tool		
		Changes		 		No	Change		 		instance_eval,	class_eval		
		Changes		 		Changes		 		class,	def,	module		
		No	Change		 		No	Change		 		block,	Class.new,	Module.new,	define_method		
		No	Change		 		Changes		 		Recursion,	Top	level	method		

We	have	discussed	most	of	the	tools	in	this	book.

As	you	continue	your	learning,	you	now	have	a	way	to	put	the	tools	into	the	appropriate
slot.	This	helps	you	to	choose	the	right	tool	for	a	given	situation.

Retry	Library
In	this	chapter,	we	will	apply	the	concepts	we	have	seen	so	far	in	the	book	to	develop	a
simple	Retry	library.

Failure	Handler	Proc
Sometimes	you	want	 to	do	 something	 after	 your	 retry	 attempts	has	 failed	 in	your	 code.
You	may	want	 to	 log	the	exception	to	a	remote	server	or	simply	write	 to	a	 log	file.	You
could	then	investigate	the	problem	later.	Let’s	write	a	simple	failure	call	back	proc	object
that	will	handle	the	failure	when	we	connect	to	a	remote	web	service.

uri	=	‘www.google.com’

query	=	‘rich’

MAX_RETRY_ATTEMPT	=	3

failure_call_back	 =	 ->	 {	 raise	 “Timeout	 Error:	 Cannot	 reach	 service	 #{uri}	 #

{query.inspect.to_s}	after	#{MAX_RETRY_ATTEMPT}	retry	attempts.”	}

failure_call_back.call

You	can	call	the	failure_call_back	proc	object	immediately.

Using	a	Class
But	 being	 able	 to	 call	 it	 later	 is	 more	 useful.	 It	 allows	 our	 library	 to	 be	 generic	 and
agnostic	 to	 the	 application	 specific	 variables.	 Let’s	 change	 our	 code	 to	make	 it	 context
independent.

#	Application	specific	code	below

uri	=	‘www.google.com’

query	=	‘rich’

retries	=	3

failure_call_back	 =	 ->	 {	 raise	 “Timeout	 Error:	 Cannot	 reach	 service	 #{uri}	 #

{query.inspect.to_s}	after	#{retries}	retry	attempts.”	}

#	Library	code	begins

class	RetryMe

		def	self.retry(failure_call_back)

				#	Retry	implementation	goes	here

				#	On	failure	the	following	call	back	is	executed

				failure_call_back.call

		end

end

#	Application	code	below

RetryMe.retry(failure_call_back)

This	prints:

RuntimeError:	Timeout	Error:	Cannot	reach	service	www.google.com	“rich”	after	3	retry	attempts.

This	works,	but	 this	approach	 is	not	message	centric.	How	can	we	 improve	 the	design?
Can	we	use	a	module?

Using	a	Module
uri	=	‘www.google.com’

query	=	‘rich’

retries	=	3

failure_call_back	 =	 ->	 {	 raise	 “Timeout	 Error:	 Cannot	 reach	 service	 #{uri}	 #

{query.inspect.to_s}	after	#{retries}	retry	attempts.”	}

module	RetryMe

		def	retry(failure_call_back)

				failure_call_back.call

		end

end

include	RetryMe

retry(failure_call_back)

This	gives	an	error:

syntax	error,	unexpected	’(‘,	expecting	end-of-input

retry(failure_call_back)

						^

catch_exception.rb:20:	in	`block	in	<top	(required)>’:	undefined	method	`each’	for	nil:NilClass	(NoMethodError)

We	cannot	use	retry	as	the	method	name	because	retry	is	a	Ruby	keyword.	Let’s	rename
the	retry	method	to	attempt.

uri	=	‘www.google.com’

query	=	‘rich’

retries	=	3

failure_call_back	 =	 ->	 {	 raise	 “Timeout	 Error:	 Cannot	 reach	 service	 #{uri}	 #

{query.inspect.to_s}	after	#{retries}	retry	attempts.”	}

module	RetryMe

		def	attempt(failure_call_back)

				failure_call_back.call

		end

end

include	RetryMe

attempt(failure_call_back)

This	results	in	the	expected	output.

#	RuntimeError:	Timeout	Error:	Cannot	reach	service	www.google.com	“rich”	after	3	retry	attempts.

This	approach	requires		include	RetryMe		statement	before	we	can	use	the	attempt	method.

Opening	the	Kernel	Module
We	can	add	our	method	to	the	Kernel	Module.

uri	=	‘www.google.com’

query	=	‘rich’

retries	=	3

failure_call_back	 =	 ->	 {	 raise	 “Timeout	 Error:	 Cannot	 reach	 service	 #{uri}	 #

{query.inspect.to_s}	after	#{retries}	retry	attempts.”	}

module	Kernel

		def	attempt(failure_call_back)

				failure_call_back.call

		end

end

attempt(failure_call_back)

This	works.	However,	there	is	a	drawback.	This	makes	it	available	everywhere.

Using	Refinements
We	can	restrict	access	to	our	methods	by	using	refinements.

uri	=	‘www.google.com’

query	=	‘rich’

retries	=	3

failure_call_back	 =	 ->	 {	 raise	 “Timeout	 Error:	 Cannot	 reach	 service	 #{uri}	 #

{query.inspect.to_s}	after	#{retries}	retry	attempts.”	}

module	RetryMe

		refine	Object	do

				def	attempt(failure_call_back)

						failure_call_back.call

				end

		end

end

using	RetryMe

attempt(failure_call_back)

This	also	works.	If	you	compare	this	solution	to	the	module	based	solution,	there	is	only
one	difference.	The	keyword		using		is	used	instead	of		include	.

Retryable	Gem
If	 you	 browse	 the	 source	 code	 for	 retryable	 gem,	 you	will	 find	 that	 it	 used	 the	Kernel
module	 approach	 in	 the	 first	 version.	 The	 2.0	 version	 uses	 the	module	 approach	where
Retryable	module	has	a	retryable	class	method.

Summary
In	 this	chapter,	we	developed	 the	core	of	a	 simple	Retry	 library	 that	 takes	advantage	of
delayed	execution	of	proc	objects.	The	failure	call	back	proc	object	is	called	only	when	all
the	attempts	has	failed.	We	briefly	saw	how	the	concepts	we	learned	in	this	book	is	used	in
the	wild.

Basics	for	Ruby	Object	Model
This	section	will	cover	the	basics	of	Ruby	needed	to	learn	the	Ruby	Object	Model.	It	does
not	 go	 into	 too	 much	 detail	 of	 the	 Ruby	 Object	 Model.	 However,	 it	 does	 provide	 the
concepts	that	are	important	to	learn	the	Ruby	Object	Model.

Introduction
Ruby’s	Object	Model	was	influenced	by	Smalltalk.	The	Smalltalk	object	model	follows	a
set	of	simple	rules	that	are	uniformly	applied.	The	rules	are:

Rule	1
Everything	is	an	object.

Rule	2
Every	object	is	an	instance	of	a	class.

Rule	3
Every	class	has	a	superclass.

Rule	4
Everything	happens	by	sending	messages.

Rule	5
Method	look-up	follows	the	inheritance	chain.

Ruby	Object	Model
In	Ruby,	Rule	1	is	not	applicable.	We	have	seen	that	everything	is	not	an	object.	We	can
say:

	

Everything	in	the	inheritance	hierarchy	is	an	Object.
Receiver	and	Sender	in	a	message	sending	interaction	are	objects.
Every	class	is	an	object.	In	other	words,	every	class	is	an	instance	of	a	Ruby	built-in
class	called	Class.

We	have	already	discussed	the	Rule	3	and	4	in	the	previous	section.	In	this	section,	you
will	learn	about	Rule	2	and	5.

Class	Methods
In	this	chapter,	we	will	answer	the	question:	Where	does	the	class	methods	live?

Instance	Method
Let’s	define	an	instance	method	drive()	in	Car	class.

class	Car

		def	drive

				p	‘driving’

		end

end

p	Car.instance_methods(false).sort

This	prints:

[:drive]

There	is	no	surprise	here,	if	we	define	an	instance	method,	it	shows	up	in	the	output.

Class	Method
What	if	we	had	defined	a	class	method	drive()	instead?

class	Car

		def	self.drive

				p	‘driving’

		end

end

p	Car.instance_methods(false).sort

This	prints:

[]

This	is	because	there	are	no	instance	methods	in	Car.	There	is	class	method	drive().	The
question	is	where	does	the	class	methods	like	drive()	live?

The	Singleton	Class
The	 class	methods	 live	 in	 singleton	 class.	We	 can	 use	 a	 special	 syntax	 that	 gives	 us	 a
reference	to	the	singleton	class	as	follows:

class	Car

		def	self.drive

				p	‘driving’

		end

end

singleton_class	=	class	<<	Car

		self

end

p	singleton_class.instance_methods(false).sort

This	prints:

[:drive]

We	can	 see	 that	 the	 singleton	 class	 holds	 the	 class	method	we	 have	 defined	 in	 the	Car
class.	Ruby	1.9	 introduced	singleton_methods	 that	 is	 an	alternative	 to	class	<<	 syntax.
We	can	use	it	like	this:

p	Car.singleton_methods

This	prints:

[:drive]

Different	Ways	to	Define	Class	Method
To	illustrate	the	point	made	above,	we	can	define	the	class	method	for	Car	in	it’s	singleton
like	this:

class	Car

end

class	<<	Car

		def	drive

				‘driving’

		end

end

p	Car.drive

This	is	same	as	this:

class	Car

		def	self.drive

				‘driving’

		end

end

p	Car.drive

And	so	is	this:

class	Car

		class	<<	self

				def	drive

						‘driving’

				end

		end

end

p	Car.drive

The	last	form	of	defining	a	class	method	will	lead	to	difficulty	in	maintenance.	Because	it
is	difficult	to	determine	whether	it	is	an	instance	method	or	a	class	method.	This	happens
when	the	class	methods	are	way	down	below	its	class	<<	self	declaration.

Summary
In	 this	 chapter,	we	 designed	 experiments	 to	 answer	 the	 question:	Where	 does	 the	 class
method	live?	We	found	that	they	live	in	singleton	class.

Singleton	Methods
In	 this	chapter,	you	will	 learn	about	singleton	methods	and	class	methods	and	how	they
relate	to	each	other.

Class	Method
Shifting	Perspective
Let’s	define	a	class	method	drive	in	Car	class.

class	Car

		def	self.drive

				p	‘driving’

		end

end

How	can	we	ask	Ruby	for	the	class	methods	defined	in	Car	class?	We	cannot	do:

Car.class_methods

We	will	get	NoMethodError.	We	have	to	use	singleton_methods.

class	Car

		def	self.drive

				p	‘driving’

		end

end

p	Car.singleton_methods

This	prints:

[:drive]

We	can	call	the	class	method	like	this:

Car.drive

To	view	the	drive()	class	method	as	a	singleton	method,	we	need	to	shift	our	perspective.
We	shift	our	perspective	from	Car	class	to	Car	as	an	instance	of	Class.

We	can	define	the	drive	class	method	like	this:

Car	=	Class.new

class	<<	Car

		def	drive

				p	‘driving’		

		end

end

Car.drive

This	also	prints:

driving

We	now	see	 that	Car	 is	an	 instance	of	class	Class	 so	 it	 is	 a	 singleton	method	 from	 that
perspective.	 To	make	 this	 concept	 clear,	 if	we	 create	 a	Bus	 class	 that	 is	 an	 instance	 of
Class:

Bus	=	Class.new

Bus.drive

This	prints:

NoMethodError:	undefined	method	‘drive’	for	Bus:Class

The	drive	class	method	is	not	available	for	Bus	class	or	any	other	instances	of	Class.

Alternative	Way	to	Define	Class	Method
Instead	of	using	class	<<	syntax,	we	can	also	define	a	class	method	like	this:

Car	=	Class.new

def	Car.drive

		p	‘driving’		

end

Car.drive

Singleton	Class	and	Class	Method
We	can	 also	define	 a	 class	method	by	defining	 a	method	 inside	 the	 singleton	 class	 like
this:

class	Car

		class	<<	self

				def	drive

						p	‘driving’

				end

		end

end

p	Car.singleton_methods

This	prints:

[:drive]

The	effect	is	the	same	as	Class	Method	section,	we	can	still	call	the	drive()	method	like
this:

Car.drive

Singleton	Method	for	an	Object
Let’s	define	a	singleton	method	called	drive	for	a	specific	instance	of	Car	class	like	this:

class	Car

end

c	=	Car.new

def	c.drive

		‘driving’

end

p	c.singleton_methods

This	prints:

[:drive]

We	can	call	the	singleton	method	drive	like	this:

p	c.drive

This	prints:

driving

Since	this	is	a	singleton	method,	the	drive()	method	is	not	available	for	other	instances	of
Car.	This	implies	that	we	cannot	do	this:

b	=	Car.new

b.drive

We	get	the	error:

NoMethodError:	undefined	method	‘drive’	for	Car.

Define	a	Method	in	Singleton	Class
We	can	do	what	we	did	in	previous	section	like	this:

class	Car

end

c	=	Car.new

class	<<	c

		def	drive

				‘driving’

		end

end

p	c.drive

This	prints:

driving

Let’s	look	at	the	singleton	methods	for	Car	class.

p	c.singleton_methods

This	prints:

[:drive]

This	 is	 the	 same	as	 the	previous	 section.	They	both	 illustrate	different	ways	 to	define	a
method	in	the	singleton	class.

Mixin	a	Module
An	alternative	to	defining	a	singleton	method	using:

class	<<	obj

construct	is	to	mix-in	the	method	from	a	module.	Here	is	an	example:

module	Driveable

		def	drive

				‘driving’

		end

end

class	Car

end

c	=	Car.new

class	<<	c

		include	Driveable

end

p	c.drive

This	prints	driving.

p	c.singleton_methods

This	prints	[:drive].	This	does	the	same	thing	we	did	in	the	previous	section.

Different	Approaches
We	have	seen	three	different	approaches:

	

Defining	a	class	method	in	a	Class.
Defining	a	singleton	method	for	a	specific	car	object.
Using	mix-in	to	define	a	singleton	method.

Let’s	now	combine	them	all	into	one	grand	example:

module	Stoppable

		def	stop

				‘brake	failure,	cannot	stop’				

		end

end

class	Car

		def	self.start

				‘starting’

		end

end

c	=	Car.new

def	c.fly

		‘flying’

end

class	<<	c

		include	Stoppable

		def	drive

				‘driving’

		end

end

p	Car.singleton_methods

This	prints	[:start].	Let’s	print	singleton	methods	for	c,	the	specific	instance	of	car	object.

p	c.singleton_methods

This	prints:

[:fly,	:drive,	:stop]

We	 can	 filter	 out	 the	 methods	 included	 in	 the	 module	 by	 passing	 false	 to	 the
singleton_methods().

p	c.singleton_methods(false)

This	prints:

[:fly,	:drive]

These	statements:

p	Car.start

p	c.drive

p	c.stop

p	c.fly

will	print:

starting

driving

brake	failure,	cannot	stop

flying

The	first	call	is	a	class	method	call	and	the	other	three	are	singleton	method	calls.

Introspect	Singleton	Class
We	can	also	ask	Ruby	for	the	singleton_class	of	a	class	like	this:

class	Car

end

p	Car.singleton_class

This	prints:

#Class:Car

Display	Singleton	Class
Let’s	look	at	a	simple	example	for	displaying	the	name	of	the	singleton	class:

class	Car

		class	<<	self

				def	class_name

						to_s

				end

		end

end

p	Car.class_name

This	prints:

Car

Dynamic	Singleton	Method
We	 can	 also	 use	 define_singleton_method()	 to	 dynamically	 define	 singleton	 method.
Here	is	an	example	that	defines	to_s	singleton	method	in	Car	class:

class	Car

end

Car.define_singleton_method(:class_name)	do

		to_s

end

p	Car.class_name

This	still	prints:

Car

Combo	Example
Let’s	combine	the	two	above	examples	into	one	example:

class	Car

		class	<<	self

				def	class_name

						to_s

				end

		end

end

Car.define_singleton_method(:whoami)	do

		“I	am	:	#{class_name}”

end

p	Car.whoami

This	prints:

I	am	:	Car

Singleton	Method	for	String
As	a	last	example,	let’s	define	a	singleton	method	on	Ruby’s	built-in	string	class.

car	=	‘Beetle’

car.define_singleton_method(:drive)	{	“You	are	driving	:	#{self}”}

p	car.drive

This	prints:

You	are	driving	:	Beetle

Let’s	check	the	singleton	methods	for	this	specific	string	object.

p	car.singleton_methods

This	prints:

[:drive]

	

Class	methods	and	singleton	methods	are	the	same.

Summary
In	 this	 chapter,	 we	 saw	 different	 ways	 to	 define	 class	methods	 and	 singleton	methods.
Class	methods	are	just	methods	on	the	singleton	class.	We	also	learned	that	the	singleton
methods	live	in	singleton	class.

Objects	and	Inheritance	Hierarchy
In	this	chapter,	you	will	learn	that	everything	in	an	inheritance	hierarchy	is	an	object.

User	Defined	Class
Let’s	define	a	user	defined	class.

class	Car

end

Object	is	the	Parent	of	Car
This	user	defined	Car	class	is	part	of	an	inheritance	hierarchy.	Thus,	we	can	ask	Ruby	for
it’s	super-class.

class	Car

end

p	Car.superclass

This	prints:

Object

Implicit	Parent
The	 Car	 class	 implicitly	 extends	 from	 Ruby’s	 built-in	 Object	 class.	 It’s	 as	 if	 you	 had
written	code	like	this:

class	Car	<	Object

end

Car	is	an	Object
We	 found	 out	 that	 the	Car	 class	 is	 part	 of	 an	 inheritance	 hierarchy.	 If	 everything	 in	 an
inheritance	hierarchy	is	an	object,	then	the	Car	class	must	be	an	object.	If	Car	class	is	an
object,	it	must	be	an	instance	of	some	class.	What	is	that	class?	We	can	ask	Ruby:

class	Car

end

p	Car.class

This	prints:

Class

The	Car	class	is	an	instance	of	Ruby’s	built-in	class	called	Class.

BasicObject	is	the	Parent	of	Object
We	know	that	super-class	of	Car	is	Object.	The	Object	also	has	a	super-class.

p	Object.superclass

This	prints:

BasicObject

Object	is	an	Instance	of	Class
The	 Ruby’s	 built-in	 Object	 is	 also	 part	 of	 an	 inheritance	 hierarchy.	 It	 must	 also	 be	 an
object.

p	Object.class

This	prints:

Class

The	Object	is	an	instance	of	Ruby’s	built-in	class	called	Class.

BasicObject	Has	No	Parent
The	Ruby’s	built-in	BasicObject	is	the	root	of	the	inheritance	hierarchy.

p	BasicObject.superclass

This	prints:

nil

The	nil	indicates	that	BasicObject	has	no	parent.

BasicObject	is	an	Instance	of	Class
BasicObject	 is	 also	 an	 object,	 since	 it	 has	 sub-classes	 and	 is	 part	 of	 the	 inheritance
hierarchy.	What	is	the	class	used	to	create	an	instance	of	BasicObject?	We	can	ask	Ruby:

p	BasicObject.class

This	prints:

Class

The	BasicObject	is	an	instance	of	Ruby’s	built-in	class	called	Class.

Fabio	Asks
Why	does	user	defined	classes	use	Class	as	the	template	to	create	an	instance?

You	define	classes	in	Ruby	using	the	class	keyword.	This	is	the	reason	that	the	class	you
define	becomes	an	instance	of	the	Ruby’s	built-in	class	called	Class.

Rhonda	Asks
Why	does	Ruby’s	built-in	classes	use	Class	as	the	template	to	create	an	instance?

The	reason	is	the	same	as	the	reason	for	user	defined	classes.	The	class	keyword	defines
the	Ruby’s	built-in	objects	like	Object	and	BasicObject.

	

User	defined	classes	and	Ruby’s	built-in	classes	are	objects.
User	defined	classes	and	Ruby’s	built-in	classes	are	instances	of	class	called	Class.

Summary
In	this	chapter,	you	learned	that	everything	in	the	inheritance	hierarchy	is	an	object.

Class,	Object	and	Module	Hierarchy
In	this	chapter,	you	will	learn	about	the	hierarchy	of	Ruby	built-in	classes,	Class,	Object
and	Module.

Object	is	an	Instance	of	Class
In	the	previous	chapter	we	experimented	with	user	defined	classes.	We	learned	that	user
defined	classes	implicitly	extend	from	Object.

What	is	the	Ruby’s	built-in	Object’s	class?	In	other	words,	Object	is	an	object,	so	it	must
be	an	instance	of	some	class,	what	is	that	class?	We	can	ask	Ruby:

p	Object.class

This	prints:

Class

Class	is	an	Instance	of	Class
The	 Ruby’s	 built-in	 Class	 itself	 is	 an	 object.	 We	 can	 find	 out	 the	 class	 used	 to	 make
instances	of	Class.

p	Class.class

This	prints:

Class

This	seems	to	be	like	the	chicken	and	egg	problem.	How	is	Class	created	from	Class?	But
Ruby	is	consistent.	Whenever	you	use	the	language	construct	class	to	create	a	Class,	Ruby
uses	Class	to	create	instances.

The	class	can	be	either	user	defined	or	the	existing	Ruby’s	built-in	classes.

name	=	‘Bugs	Bunny’

p	name.class

This	prints:

String

String	is	the	Ruby’s	built-in	class.	The	above	code	is	the	same	as	doing	this:

name	=	String.new(‘Bugs	Bunny’)

p	name.class

BasicObject	is	Parent	of	Object
In	the	previous	chapter,	we	saw	that	Object	was	the	super-class	of	any	user	defined	class.
What	is	the	super-class	of	Object?

p	Object.superclass

This	prints:

BasicObject

BasicObject	is	the	Root
What	is	the	super-class	of	BasicObject?

p	BasicObject.superclass

This	prints:

nil

This	means	BasicObject	is	the	root	of	the	hierarchy.	It	does	not	have	a	parent.

BasicObject	is	an	Instance	of	Class
The	BasicObject	is	an	instance	of	Class.	You	can	verify	it	like	this:

p	BasicObject.class

This	prints:

Class

Module	is	the	Parent	of	Class
What	is	the	super-class	of	Class?

p	Class.superclass

This	prints:

Module

Here	is	the	visual	summary	of	what	we	have	learned	so	far.

Module	is	an	Instance	of	Class
The	class	Module	is	an	object.	What	class	is	it	an	instance	of?

p	Module.class

This	prints:

Class

Why	is	Module	a	Class?
How	can	module	be	a	class?	Let’s	say	we	have	a	Vehicle	module:

module	Vehicle

		def	wheels

				1000

		end

end

p	Vehicle.class

This	prints:

Module

The	Module	is	a	class	because	Ruby	defines	Module	like	this:

class	Module

end

Can	we	create	an	instance	of	Module	class?	Yes,	we	will	see	that	next.

How	to	Create	a	Module	Instance?
Instead	of	doing	this:

module	Vehicle

		def	wheels

				100

		end

end

class	Car

		include	Vehicle

end

c	=	Car.new

p	c.wheels

We	can	do	the	same	thing	we	did	above	like	this:

Vehicle	=	Module.new	do

		def	wheels

				100

		end

end

class	Car

		include	Vehicle

end

c	=	Car.new

p	c.wheels

Fabio	Asks
Why	would	you	want	to	create	a	module	the	second	way?

The	short	answer	is	blocks	are	closures.	We	have	access	to	the	variables	before	the	do-end
block.

Methods	in	Module,	Class	and	Object
Let’s	 now	 compare	 the	methods	 in	Module,	Class	 and	Object.	Here	 are	 the	methods	 in
Module.

p	Module.public_methods(false).sort

This	prints:

[:allocate,	:constants,	:nesting,	:new,	:superclass]

Here	are	the	methods	in	Class.

p	Class.public_methods(false).sort

This	prints:

[:allocate,	:constants,	:nesting,	:new,	:superclass]

Here	are	the	methods	in	Object.

p	Object.public_methods(false).sort

This	prints:

[:allocate,	:new,	:superclass]

You	can	see	we	can	create	instances	of	Module,	Class	and	Object.	Because	they	have	the
method	new().	 You	 can	 also	 notice	 that	 class	 and	module	 have	 the	 same	 set	 of	 public
methods.

Dynamic	Creation	of	Car	Class
We	already	know	that	user	defined	classes	are	instances	of	Class.	Instead	of	doing	this:

class	Car

		def	drive

				p	‘driving…’

		end

end

c	=	Car.new

c.drive

We	can	do	this:

Car	=	Class.new	do

		def	drive

				p	‘driving…’

		end

end

c	=	Car.new

c.drive

Both	versions	of	the	Car	examples	print:

driving…

Rhonda	Asks
Why	would	you	want	to	create	a	class	the	second	way?

The	short	answer	is	blocks	are	closures.	We	have	access	to	the	variables	before	the	do-end
block.

Summary
In	 this	 chapter	 you	 learned	 the	 Ruby’s	 built-in	 inheritance	 hierarchy.	 This	 consists	 of
Class,	Object,	Module	 and	BasicObject.	You	 also	 saw	 how	we	 can	 create	modules	 and
classes	by	creating	them	on	the	fly	and	adding	methods	to	it.

Hierarchy	of	Class	Methods
In	this	chapter,	you	will	learn	that	class	methods	have	their	own	inheritance	hierarchy.	We
will	also	see	that	the	sub	classes	inherit	the	class	methods	from	its	parent.

Class	of	a	Singleton	Class
Let’s	consider	the	example	we	saw	in	the	previous	chapter.

class	Car

		def	self.drive

				‘driving’

		end

end

singleton_class	=	Car.singleton_class

What	class	is	this	singleton	class	an	instance	of?	Let’s	ask	Ruby:

p	singleton_class.class

This	prints:

Class

Object	Hierarchy	of	Singleton	Class
What	is	object	hierarchy	of	the	singleton	class?	Let’s	ask	Ruby:

p	singleton_class.ancestors

This	prints:

[#<Class:Car>,	 #<Class:Object>,	 #

<Class:BasicObject>,	Class,	Module,	Object,	Kernel,	BasicObject]

There	 is	 a	 whole	 new	 hierarchy	 consisting	 of	 singleton	 classes	 for	 Car,	 Object	 and

BasicObject.	Compare	this	to	the	ancestors	of	a	normal	class:

p	Car.ancestors

This	prints:

[Car,	Object,	Kernel,	BasicObject]

Now	we	don’t	see	any	singleton	classes	in	this	case.

One	Level	Up
We	can	go	one	level	up	and	do	a	similar	experiment.

class	Object

		def	self.drive

				p	‘driving’

		end

end

singleton_class	=		Object.singleton_class

p	singleton_class.ancestors

This	prints:

[#<Class:Object>,	#<Class:BasicObject>,	Class,	Module,	Object,	Kernel,	BasicObject]

One	More	Level	Up
Let’s	go	one	more	level	up	and	repeat	a	similar	experiment.

singleton_class	=	BasicObject.singleton_class

p	singleton_class.ancestors

This	prints:

[#<Class:BasicObject>,	Class,	Module,	Object,	Kernel,	BasicObject]

Practical	Use
Let’s	define	a	class	method	in	Ruby	built-in	BasicObject.

class	BasicObject

		def	self.drive

				p	‘driving…’

		end

end

class	Car

end

Car.drive

This	prints:

driving

Sub	 classes	 can	 call	 its	 parent’s	 class	 methods.	 If	 you	 are	 familiar	 with	 ActiveRecord
library	of	Rails,	we	often	do	something	like	this:

module	ActiveRecord

		class	Base

				def	self.find(id)

						‘finding…’

				end

		end

end

class	Car	<	ActiveRecord::Base

end

Car.find(1)

Now	you	know	how	it	works.

Same	Sender	and	Receiver
How	 are	 we	 able	 to	 call	 ActiveRecord	 class	 methods	 without	 a	 receiver?	 Can	 we	 say
Sender	and	Receiver	are	the	same	in	this	case?	For	example:

class	Car	<	ActiveRecord::Base

		has_many	:wheels

end

The	concept	slightly	varies	because	sub	classes	can	call	class	methods	without	a	receiver.
You	can	say	sub	class	is	a	super	class.	This	is	the	reason	why	you	can	consider	the	sender
and	receiver	to	be	the	same.

Summary
In	 this	 chapter,	we	 learned	 that	 class	methods	have	 their	 own	 inheritance	hierarchy.	We
also	saw	that	the	sub	classes	inherit	the	class	methods	from	its	parent.

The	Method	Lookup
In	 this	chapter,	you	will	 learn	 the	 introspection	abilities	of	Ruby	 in	 the	context	of	Ruby
Object	Model.	We	will	query	for	ancestors.	Class	hierarchy	determines	the	method	look-
up	in	Ruby.

Define	Method	in	Object
We	already	know	that	class	Object	is	the	super	class	of	any	user	defined	class.	Let’s	define
a	greet	method	by	opening	the	Ruby’s	built-in	Object	class.

class	Object

		def	greet

				puts	‘hi’

		end		

end

User	Defined	Class
Let’s	create	a	class	and	call	the	method	greet()	on	it.

class	Greeter

end

g	=	Greeter.new

g.greet

This	prints:

hi

The	 variable	g	 has	 an	 instance	 of	Greeter	 class.	When	we	 call	 the	greet()	method,	 the
value	of	self	changes	to	the	Greeter	object	g.	Then	Ruby	looks	for	the	greet()	method	in
the	Greeter	class.	It	does	not	find	it	there.	It	goes	to	the	super-class	of	Greeter	which	is	the
Ruby’s	 built-in	 Object	 class.	 It	 finds	 the	 greet()	 method	 in	 Object	 class,	 it	 calls	 that
method.

Method	Lookup	Path
We	can	ask	ruby	for	its	method	look	up	path	like	this:

class	Object

		def	greet

				p	‘hi’

		end

end

class	Greeter

end

p	Greeter.ancestors

This	prints:

[Greeter,	Object,	Kernel,	BasicObject].

The	 order	 in	which	 the	 classes	 and	modules	 appear	 in	 the	 array	 represents	 the	 order	 in
which	Ruby	searches	for	the	methods.	The	method	look	up	sequence	is	as	shown	below:

	

1.	 Greeter	Class
2.	 Object	Class
3.	 Kernel	Module
4.	 BasicObject	Class

Summary
In	 this	 chapter,	 you	 learned	 the	 introspection	 abilities	 of	 Ruby	 in	 the	 context	 of	 Ruby
Object	Model.	We	were	able	to	query	for	ancestors.	Why	do	we	need	to	worry	about	class
hierarchy	in	Ruby?	Because	it	determines	the	method	look-up	in	Ruby.

Object	Oriented	Programming	Revisited
This	section	reviews	some	concepts	using	examples	used	in	section	2	of	this	book.

Modeling	the	Real	World
In	 this	 chapter,	 you	 will	 learn	 how	 we	 model	 the	 real	 world	 using	 objects	 that	 send
messages	to	communicate.

Self	Driving	Car
The	example	we	saw	in	previous	section	looks	more	like	a	self	driving	car.

The	Car	object	sends	drive()	to	itself.

In	code,	it	will	look	like	this:

class	Car

		def	self.drive

				p	‘driving’

		end

		p	“Sender	is	:	#{self}”

		p	“Receiver	is	:	#{binding.receiver}”

		Car.drive

end

This	prints:

Sender	is	:	Car

Receiver	is	:	Car

driving

You	can	see	that	the	sender	and	receiver	is	the	Car	class.	The	binding	method	provides	us
the	execution	context.	We	can	retrieve	the	receiver	object	from	the	execution	context.

Driver	and	Car
In	reality,	it’s	the	driver	who	drives	the	car.

Sender	and	Receiver

Intent	vs	Implementation
What	is	intent?
I	want	to	drive	the	car.	We	don’t	reach	into	the	transmission	and	pull	 levers	to	drive	the
car.	We	step	on	the	gas	to	drive	the	car.	Your	grandma	can	drive	the	car	without	knowing
the	details	of	the	engine.	She	expresses	her	intent	by	using	the	public	interface	of	the	car.

What	is	implementation?
The	things	under	the	hood	of	a	car	is	the	implementation.	Only	your	car	mechanic	knows
about	the	details	of	the	car	engine.	You	may	be	aware	of	the	3.0	litre	V-6	engine,	but	you
have	no	idea	how	it	works.

Background	Job	Processing
Let’s	see	an	example	for	code	that	reaches	into	the	implementation	details	of	a	method.

MyQueueClass.instance.enque(job)

This	 code	 knows	 that	 the	 implementation	 of	 the	 background	 processing	 class	 uses
Singleton	 pattern.	 How	 can	 we	 fix	 this	 problem?	 To	 express	 the	 intent	 without	 any
dependency	on	the	implementation,	we	can	re-write	the	code.

MyQueueClass.enque(job)

In	this	case,	the	client	of	the	MyQueueClass	is	independent	of	the	implementation	details.
We	now	have	an	 intent	 revealing	 interface.	This	 interface	 is	 stable.	Tomorrow	you	may
decide	not	to	use	the	Singleton	pattern,	if	so,	the	interface	will	not	change.

Write	an	example	program	to	illustrate	the	fact	that	a	driver	drives	a	car.	Hint:	It	will	be
like	the	Teacher-Student	example	we	saw	in	Message	Passing	chapter.

Summary
In	 this	 chapter,	 we	 discussed	 how	 we	 model	 the	 real	 world	 using	 objects	 that	 send
messages	 to	 communicate.	 We	 also	 saw	 how	 to	 separate	 the	 intent	 from	 the
implementation	to	define	intent	revealing	interface.

Resources
Abstraction
Basics	of	Abstraction

Single	Purpose	Principle

The	Art	of	Uniform	Interface

https://www.rubyplus.com/articles/2661
https://www.rubyplus.com/articles/2641
https://www.rubyplus.com/articles/2941

Coupling	Basics
Dependency	Direction

Concrete	Class	vs	Abstract	Messages

https://www.rubyplus.com/articles/2211
https://www.rubyplus.com/articles/2201

Object	Oriented	Design	Basics
Flexible	Design

Localized	Change	vs	Additive	Change

Open	Closed	Principle

The	Three	Basic	Rules	for	a	Good	Design

https://www.rubyplus.com/articles/661
https://www.rubyplus.com/articles/2221
https://www.rubyplus.com/articles/2281
https://www.rubyplus.com/articles/2651

	

Class	acts	as	a	template	used	to	create	objects.
Class	describes	the	behavior	and	state	that	an	object	can	hold.
Every	object	is	an	instance	of	a	class.
Instance	methods	live	in	the	class.
Instance	variables	live	in	the	object.
Instance	variables	are	unique	to	each	object.
By	default,	instance	variables	are	hidden	from	the	outside.
We	can	expose	instance	variable	via	an	accessor.
You	can	over-ride	the	to_s	method	to	customize	the	inspect	message.
Everything	is	an	object	is	true	for	Smalltalk	but	not	for	Ruby.
Every	sender	and	receiver	in	a	message	passing	interaction	is	an	object.
Sender	can	be	explicit	or	implicit.
Sender	is	the	owner	of	the	scope	where	the	message	originated.
The	dot	notation	makes	sending	messages	explicit.
If	the	receiver	and	the	sender	is	the	same,	you	can	omit	the	receiver	and	the	dot.
There	is	always	a	receiver.
There	is	always	a	sender.
There	is	always	a	message	that	passes	between	the	sender	and	the	receiver.
You	cannot	provide	an	explicit	receiver	to	call	a	private	method.
You	have	to	call	the	private	method	in	functional	form.
Everything	in	the	inheritance	hierarchy	is	an	Object.
Receiver	and	Sender	in	a	message	sending	interaction	are	objects.
Every	class	is	an	object.	In	other	words,	every	class	is	an	instance	of	a	Ruby	built-in
class	called	Class.
Every	object	is	an	instance	of	a	class.
Every	class	has	a	superclass.
Everything	happens	by	sending	messages.
Method	lookup	follows	the	inheritance	chain.
Class	methods	and	singleton	methods	are	the	same.
User	defined	classes	and	Ruby’s	built-in	classes	are	objects.
User	defined	classes	and	Ruby’s	built-in	classes	are	instances	of	class	called	Class.

Essential	Book	Series
Essential	Object	Oriented	Analysis

This	book	covers	the	following	topics.

	

Domain	Object
Parts	of	Speech	Technique
Case	Study	:	Buffet	R	Us
How	to	Identify	Services
CRC	Technique
Interviewing	Domain	Experts
Conceptual	Category	List
Static	Modeling
Class	Design
Finding	Operations	from	the	Static	Model
Abstraction
Choose	Good	Names
Encapsulation
Polymorphism
Interfaces
Domain	Model
Effective	Use	of	Inheritance

Essential	Object	Oriented	Design	in	Ruby

This	 book	 covers	 the	 basic	Object	Oriented	Design	 concepts	 using	Ruby	 programming
language.	Topics	covered	are:

	

Basics	of	Abstraction
Single	Purpose	Principle
Stepwise	Refinement
Dependency	Inversion	Principle
Basic	Three	Rules	of	Design
The	Art	of	Uniform	Interface
Localized	Change	vs	Additive	Change
Coupling	Basics	:	Dependency	Direction
Concrete	Class	vs	Abstract	Messages
Flexible	Design
Open	Closed	Principle

Test	Driven	Development	in	Ruby:	A	Gentle	Introduction	for	Beginners

This	book	covers	the	following	topics:

	

http://www.amazon.com/Essential-Object-Oriented-Analysis-Paranj-ebook/dp/B01DH599DS
http://www.amazon.com/Essential-Object-Oriented-Design-Ruby-ebook/dp/B01D9CMFQC
http://www.amazon.com/Test-Driven-Development-Ruby-Introduction-ebook/dp/B00SDKSDBW

Kata
What	is	a	Coding	Kata?
Why	Coding	Kata?
What	is	a	Domain?
What	is	a	Problem	Domain?
What	is	a	Solution	Domain?
What	vs	How
Why	distinguish	the	What	and	How?
How	to	Separate	the	What	from	How?
Focus	of	What
Focus	of	How
A	Brief	Introduction	to	TDD
What	is	TDD?
Why	TDD?
What	are	the	steps	in	TDD?
Why	write	a	failing	test	first?
How	to	Write	a	Failing	Test?
How	to	Make	the	Test	Pass?
How	to	Get	All	Benefits	of	TDD?
Why	is	TDD	Difficult	to	Learn?
How	TDD	Separates	the	What	from	How?
Problem	Solving	Skills
How	Does	Problem	Solving	Skills	Fit	into	TDD?
Why	do	we	Need	to	Separate	these	Four	Phases?
How	Do	You	Analyze	the	Problem?
How	Much	Analysis	is	Enough?
Basics	of	Test	Driven	Development
Designing	Test	Cases
Why	Design	Test	Cases?
How	Many	Test	Cases	Do	We	Need?
What	Should	Be	the	Sequence	of	Tests?
What	is	a	Starter	Test?
What	is	a	Next	Test?
What	is	a	Story	Test?
Assertion
How	Many	Assertions	Can	You	Use	in	a	Test?
Canonical	Test	Structure
Minimal	Implementation
Why	do	we	Aim	for	Simplicity?
Ways	to	do	Minimal	Implementation
Getting	it	Right
Common	Beginner	Mistakes
Techniques	in	TDD
Obvious	Implementation
Fake	it	Till	You	Make	It
Triangulation

Essential	SQL:	A	Gentle	Introduction	for	Beginners

This	book	covers	the	following	topics:

	

Create,	Insert	and	Select	Statements
Sorting
Search	Conditions
Advanced	Search	Conditions
Wildcard	Search
Calculated	Fields
Aggregate	Functions
Grouping	Data
Subqueries
Joins
Inner	Joins
Advanced	Joins
Update	and	Delete
Constraints
Indexes

Essential	Git:	Introduction	to	Git	Basics	for	Beginners

This	book	covers	the	following	topics.

	

Create	a	Project
Checking	Status
Making	Changes
Staging	Changes
Un-staging	Changes
Committing	Changes
Tracking	Changes	to	Files
Committing
History
Find	the	Hash	for	Previous	Version
Tagging	Versions
Revert	Local	Changes
Undoing	Staged	Changes
Reverting	Committed	Changes
Removing	Commits
Remove	Unnecessary	Tag
Modify	Commits
Moving	Files
Creating	Branches
Switching	Branches
Dealing	with	Different	Changes
Viewing	Diverging	Branches

http://www.amazon.com/Essential-SQL-Gentle-Introduction-Beginners-ebook/dp/B00UFAJ6M8
http://www.amazon.com/Essential-Git-Introduction-Basics-Beginners-ebook/dp/B00UKI0Q0G

Merging
Conflict
Rebasing
Create	a	Remote	Repository
Push	Branch	to	Remote
Get	all	Remote	Branches
Keep	Branches	Up	to	Date
List	all	Branches

Essential	Ruby

This	book	covers	the	following	topics.

	

What	is	a	Class?
What	is	an	Object?
Creating	an	Object?
State	and	Behavior
Hidden	Instance	Variables
Sending	a	Message	to	a	Receiver
Message	Passing
Inheritance
Module
Symbol
The	yield	Keyword
Everything	is	not	an	Object
Top	Level	Context
Code	Execution
Binding
Pseudo	Variables
The	Default	Receiver
Message	Sending	Expression
The	Self	at	the	Top	Level
The	Dynamic	Nature	of	Self
When	does	Self	Change
The	main	Object
Message	Sender	at	the	Top	Level
Top	Level	Methods
Same	Sender	and	Receiver
Private	Methods
Scope	of	Variables
Every	Object	has	a	Class
Instance	Methods	and	Instance	Variables
Block	Object
Focus	on	Messages
Self	and	Scope
Retry	Library

http://www.amazon.com/Essential-Ruby-BALA-PARANJ-ebook/dp/B01D95AST0

Class	Methods
Singleton	Methods
Objects	and	Inheritance	Hierarchy
Class,	Object	and	Module	Hierarchy
Hierarchy	of	Class	Methods
The	Method	Lookup
Modeling	the	Real	World

Table	of	Contents
Introduction

Object	Oriented	Programming

What	is	a	Class?
What	is	an	Object?
Creating	an	Object
State	and	Behavior
Hidden	Instance	Variables
Sending	a	Message	to	a	Receiver
Message	Passing
Inheritance
Module

Essential	Ruby

Symbol
The	yield	Keyword
Everything	is	Not	an	Object
Top	Level	Context
Code	Execution
Binding
Pseudo	Variables
The	Default	Receiver
Message	Sending	Expression
The	Self	at	the	Top	Level
The	Dynamic	Nature	of	Self
When	does	self	Change?
The	main	Object
Message	Sender	at	the	Top	Level
Top	Level	Methods
Same	Sender	and	Receiver
Private	Methods
Scope	of	Variables
Scope	of	Variables	Redux
Every	Object	Has	a	Class
Instance	Methods	and	Instance	Variables
Block	Object
Closures
Focus	on	Messages
Self	and	Scope
Retry	Library

Basics	for	Ruby	Object	Model

introduction
Class	Methods

Singleton	Methods
Objects	and	Inheritance	Hierarchy
Class,	Object	and	Module	Hierarchy
Hierarchy	of	Class	Methods
The	Method	Lookup

Object	Oriented	Programming	Revisited

Modeling	the	Real	World
Resources

Key	Takeaways

Essential	Book	Series

	Introduction
	Object Oriented Programming
	What is a Class?
	What is an Object?
	Creating an Object
	State and Behavior
	Hidden Instance Variables
	Sending a Message to a Receiver
	Message Passing
	Inheritance
	Module

	Essential Ruby
	Symbol
	The yield Keyword
	Everything is Not an Object
	Top Level Context
	Code Execution
	Binding
	Pseudo Variables
	The Default Receiver
	Message Sending Expression
	The Self at the Top Level
	The Dynamic Nature of Self
	When does self Change?
	The main Object
	Message Sender at the Top Level
	Top Level Methods
	Same Sender and Receiver
	Private Methods
	Scope of Variables
	Scope of Variables Redux
	Every Object Has a Class
	Instance Methods and Instance Variables
	Block Object
	Closures
	Focus on Messages
	Self and Scope
	Retry Library

	Basics for Ruby Object Model
	introduction
	Class Methods
	Singleton Methods
	Objects and Inheritance Hierarchy
	Class, Object and Module Hierarchy
	Hierarchy of Class Methods
	The Method Lookup

	Object Oriented Programming Revisited
	Modeling the Real World
	Resources

	Key Takeaways
	Essential Book Series

